【熱測定応用研究のページ】

ITC を用いたカイネティクス解析

廣瀬 雅子 スペクトリス(株) マルバーン・パナリティカル事業部

Kinetics Analysis using ITC Measurements

Masako Hirose Malvern Panalytical division of Spectris Co., Ltd

1. はじめに

ITC (等温滴定型カロリメトリー)は、滴定によって生 じる相互作用の熱量変化を計測し結合定数を算出する分 子間相互作用解析法である。反応の End point を観察する ことから、一般的にはカイネティクス解析には適していな いと考えられている。しかしながら、ITC 測定で得られる 熱量情報は μ Js⁻¹で表わされ、熱産生の速度を示している ことがわかる。また、ITC 測定の生データを注意深く観察 すると、サンプルによってレスポンスがベースラインに戻 る時間が異なっていることに気付く。本稿では、ITC デー タから、どのようにカイネティクスの情報を取得するかに ついて取り上げる。なお、これらの情報は弊社アプリケー ションノート「Implementation of kinITC into AFFINImeter」¹⁾ を要約したものである。kinITC 法は 2012 年に Burnouf ら によって報告されており、詳細についてはこちらを参照い ただきたい。²⁾

2. カイネティクスパラメータの算出方法

サンプル A とサンプル B が複合体 C を形成する場合, その反応は以下のように表わされる。

 $A + B \leftrightarrow C$ (右向きに k_{on} , 左向きに k_{off} を持つ) (1) この反応は以下のカイネティクス式で表わされる。

 $d[C]/dt = k_{on} [A][B] - k_{off}[C]$ (2)

ここで[A]₀を ITC のセルに充填したサンプルの初期濃度 とすると、測定に伴い希釈されるそれぞれの濃度は $A = [A]/[A]_0, B = [B]/[A]_0, C = [C]/[A]_0$ で表わされ、以下の式 が導き出される。

$$dC/dt = k_{on} [A] _{0}AB - k_{off}C$$

このとき任意の時間 t における, ITC のセル内で起こる 熱量シグナル Ps との関係は以下の式で表わされる。

$$P_{\rm S}(t) = V_{\rm cell} \Delta H [A]_0 dC/dt \tag{4}$$

ここで V_{cell} はセル体積であり、dC/dt が(3)から求められ ていれば $P_{s}(t)$ を評価できる。しかしながら、実際には装置 固有のレスポンスタイム (τ_{ITC})を考慮する必要があり、 $P_{s}(t)$ は実際に測定した $P_{m}(t)$ ではないことに注意しなけれ ばならず、(5) 式のように表わすことができる。³⁾ (Dumas, 2015)

$$P_{\rm S}(t) = P_{\rm m}(t) + \tau_{\rm ITC} dP_{\rm m}/dt$$
(5)

 τ_{ITC} は $P_m(t) = P_{max} exp (-t/\tau_{ITC})$ から実験的に求めることが 可能で (1-3 % v/v MeOH を 1 µl 滴下),弊社の MicroCal iTC200 では,およそ 3.5 s であることが分かっている。 ITC のデータを見ると,それぞれの滴定間においてもベ ースラインに戻るまでの時間が異なることに気付く。 (Fig.1)特に[A] = [B]近傍,またはそれに近い滴定時 (1:1結合の場合。Fig.1 破線で示したレスポンス)では 平衡化にかかる時間が最も遅くなっており,カイネティク スシグナルが得られていることが分かる。

Fig.1 Evolution of the time of return to baseline (equilibration time) The injection curves (upper-panel) were calculated with the values $[A]_0 = 11 \ \mu\text{M}$, $[B]_0 = 120 \ \mu\text{M}$, $k_{on} = 10^4 \ \text{M}^{-1}\text{s}^{-1}$, $k_{off} = 10^{-3} \ \text{s}^{-1}$ ($K_d = 0.1 \ \mu\text{M}$), $\tau_{\text{TTC}} = 3.5 \ \text{s}$ and $\tau_{\text{mix}} = 0.8 \ \text{s}$.

また,各滴定でベースラインに戻るまでの時間(τ)は Burnouf らにより(6)式が求められている²⁾。

$$\tau = \frac{1/c}{k_{df} \left[\left(1/c + s + 1 \right)^2 - 4s \right]^{1/2}}$$
(6)

ここで $c = [A]_0/Kd$ はWiesemanパラメータで、 $s = [B]_{tot}/[A]_{tot}$ は化学量論比で既知であり、 τ が得られれば k_{off} が求まる。 なお、実際のデータでは、ベースラインに戻るまでの時間 にはシステムのもつレスポンスタイムと滴定にかかる時間(t_{INJECT})を考慮した、 $4.5(\tau+\tau_{ITC})+(t_{INJECT})$ が望ましいこと が見出されている。

Fig.1 のシミュレーションデータを元に、**Fig.2** では各滴 定時の化学量論比を横軸に、各レスポンスがベースライン に戻るまでにかかった時間(θ k)を縦軸に、点のみでプロ ットした。また、(6)式を用いて求めた各滴定におけるτは、 4.5(τ+ τ_{ITC})+(t_{INJECT})で算出したものを点付き曲線で示した。 この曲線を Equilibraition-Time Curve (ETC) と呼ぶ。これ らを見ると、シミュレーションデータから得られた平衡化 にかかる時間と、 k_{off} のパラメータを含んだ理論式(6)から 求めたそれが近似していることが示されている。このこと から、測定で得られた平衡化にかかる時間を求めることで ETC から k_{off} が求められることが示された。 K_d は通常のITC 解析から求められているので、 $K_d = k_{\text{off}}/k_{\text{on}}$ から k_{on} が算出

Netsu Sokutei 45 (2) 2018

(3)

Fig.2 Equilibration-time curve. The equilibration times θk (dots) were determined from the theoretical injection curves as explained in the legend of Fig.1. Dots with line correspond to $4.5(\tau+\tau_{TTC})+t_{INJECT}$, where τ is given by equation (6) with the parameters used for the calculation of the theoretical data in Fig.1.

される。なお、これらの計算は、AFFINImeter 社から提供 されている kinITC モデルを搭載した解析ソフトウェア (KinITC)を用いるとほぼ自動で取得することが可能である。

3. 実際のデータでの KinITC の応用

SPR (表面プラズモン共鳴) と kinITC 法を比較するた め, 炭酸脱水素酵素とその阻害剤の 4-CBS で測定を行った。 SPR による測定結果は文献 3 を参考とした。ITC 測定は MicroCal iTC200 を使用した。測定温度は 6.1, 9.1, 12.1, 15.1, および 25 °C でそれぞれ 5 回測定を行った。攪拌速 度は 1,000 rpm, Feedback Mode は High を用いた。4-CBS は Sigma から入手し, 酵素調製は文献 3 を参照した。4-CBS は 315 μ M, 酵素は 26 μ M (25 °C のみ 19 μ M) にそれぞれ 調整した。1 滴定目のみ 0.3 μ l で滴下し, 以降は 1.9 μ l(25 °C のみ 1.4 μ l)で実施した。滴定速度は 0.5 μ ls⁻¹で, Filter Period (データ取得平均化の時間) は 2 s に設定した。測定結果 を Fig.3 に示す。

Fig.3 Subset of results obtained with AFFINImeter. Top: illustration of the raw injection curves. Middle: resulting titration curves obtained by AFFINImeter. Bottom: experimental and theoretical ETCs. (Only show data at 9.1 °C and 15.0 °C).

Fig.4 Arrhenius plots for $k_{on}(left)$ and $k_{off}(right)$ obtained from KinITC and SPR.

測定結果より ETC を用いてすべての温度における k_{on} , k_{off} をそれぞれ求めた。これらの値と文献 3) で得られている SPR の値でアレニウスプロットを作成した(Fig.4)。

プロットを見ると、ITC 測定による k_{on} および k_{off} も SPR と同様に温度依存性が示された。また、実験誤差範囲内で 傾きがほぼ同等であり、このことは k_{on} SPR/ k_{on} kinITC および k_{off} SPR/ k_{off} kinITC の比率がほとんど変化しないことを示して いる。それぞれの活性化エネルギー ΔH^{\ddagger} は以下のアレニウ スプロットの式(7)より、プロットから得られる傾きに気体 定数 R をかけることで求まることがわかる。

$$lnk = -\frac{\Delta H^{*}}{R} \cdot \frac{1}{T} + lnA$$
このことから,活性化エネルギー ΔH_{on}^{*} および ΔH_{off}^{*} も実験誤差内でほぼ同一であることが示された。
(7)

4. おわりに

ITCによるカイネティクス解析,kinITC法は,固定化, ラベル化不要で,特別なサンプル調整を必要としない「溶 液中」の手法という利点がある。また,通常のITC測定の データをそのまま用いてKinITCソフトウェアで解析を行 うことができる。カイネティクス,相互作用の観点ではITC ならびにSPR は共に有用な情報を与える。重要なのは双 方ともモデルフィッティングによる解析であり,得られる パラメータの妥当性については総合的に判断することが 重要であると考える。

文 献

- P. Dumas, E. Ennifar, G. Bec, A. Pineiro, J. Sabn, E. Munoz, and J. Rial, Malvern Application Note, Implementation of kinITC into AFFINImeter (2015).
- D. Burnouf, E. Ennifar, S. Guedich, B. Puffer, G. Hoffmann, G. Bec, F. Disdier, M. Baltzinger, and P. Dumas, J. Am. Chem. Soc. 134, 559-565 (2012).
- I. Navratilova, G. A. Papalia, R. L. Rich, D. Bedinger, S. Brophy, B. Condon, T. Deng, A. W. Emerick, H. W. Guan, T. Hayden, T. Heutmekers, B. Hoorelbeke, M. C. McCroskey, M. M. Murphy, T. Nakagawa, F. Parmeggiani, X. Qin, S. Rebe, N. Tomasevic, T. Tsang, M. B. Waddell, F. F. Zhang, S. Leavitt, and D. G. Myszka, *Anal. Biochem.* 364, 67-77 (2007).