熱測定 第51巻 No.1~No.4 2024年

巻 頭 言	定常ずり機構を備えた示差走査熱量計
新たな一歩,半世紀経て 森川 淳子 1	(Shear-DSC) の開発 山本 太郎, 鈴木 晴 124
	Li ₃ NaSiO ₄ 高純度粉末の合成と CO ₂ 吸収/放出機構・
	サイクル特性
2024 年度学会賞等選考結果報告	岩崎 俊平,平井 麻菜美,志藤 広典,橋本 拓也 141
学会賞 一柳 優子 会員139	異なるカチオン共存下における G4 アプタマーの
学会賞 橋本 拓也 会員140	構造変化のカロリメトリーを用いた検出
	冨田 恵麗沙, 石垣 卓, 廣瀬 雅子,
	加藤 真紀, 川上 純司 148
2023 年度日本熱測定学会奨励賞	バイオポリエステルの分子構造および加工条件の
高分子インフォマティクス 石切山 一彦 105	制御による高耐熱性化 石井 大輔 153
	油/水界面における不均一な吸着膜形成と線張力
	瀧上 隆智 160
特 集 - 溶液の熱力学の新潮流 -	2次の強誘電相転移をする結晶の構造および誘電特性
特 集「溶液の熱力学の新潮流」にあたって	寺澤 有果菜,喜久田 寿郎 166
神崎 亮 2	
ヨウ素を含む深共晶溶媒の高導電性と熱測定の試み	
城田 秀明, コヤカット マハルーフ,	フロギストン
矢嶋 慎吾, 佐藤 純平, 森山 克彦 3	深共晶溶媒 城田 秀明 35
深共晶溶媒の機能を調整するための分子置換	ポリヨウ化物アニオン (ポリヨウ化物イオン)
-グアニジン塩酸塩と尿素からなる深共晶溶媒の	城田 秀明 35
官能基効- 梅木 辰也 10	Grotthuss 機構 城田 秀明 35
次世代蓄電デバイスに資する超濃厚電解液の	ニュートン流体・非ニュートン流体 梅木 辰也 35
スペシエーションとダイナミクス	水素結合供与体・水素結合受容体 梅木 辰也 35
	核磁気共鳴(NMR)分光法と外部複基準法
統計熱力学で理解する疎水性色素の溶解メカニズム 金崎 悠 22	梅木 辰也 35
	Walden 則 渡辺 日香里 36
	電気化学インピーダンス法渡辺 日香里 36
	ナイキスト線図(ナイキストプロット)
解 説	
圧力応答型蓄熱特性を示すラムダ型五酸化三チタン	分散染料 金崎 悠 36
所 裕子, 大越 慎 63	Kirkwood-Buff 積分 金崎 悠 37
バイオマスの半炭化(トレファクション)	排除体積 金崎 悠 37
改質技術と展望	逆ミセルーゾルゲル法 所 裕子 101
澤井 徹, 井田 民男, 水野 諭, 金田 奈実 70	第一原理フォノンモード計算 所 裕子 101
キラル化合物の融点相図の作成と結晶化による	Slichter-Drickamer (SD) モデル 所 裕子 101
光学分割への適用	半炭化(トレファクション) 井田 民男 101
人工設計αヘリックス型ペプチドナノファイバーの	ライフサイクル CO ₂ (LCCO2) 井田 民男 101
超耐熱性化と液晶性の獲得	非等温解析法 井田 民男 102
	van Krevelen diagram 井田 民男 101
分子運動をプローブとする固体物性研究	晶析
	第二種不斉変換(デラセミ化) 桶谷 龍成 101
富士山麓における熱測定研究の近況	Viedma 熟成
	疎水モーメントベクトル
	SMILES 石切山 一彦 131

人上ニューフルネットリーク (ANN)	18th International Congress on Thermal Analysis
石切山 一彦 131	•
定量的構造物性相関(QSPR) 石切山 一彦 131	山田 秀人 176
スピン-格子緩和時間	
ソリッドエコー	
自己相関関数 浅地 哲夫 132	会 報
Bloembergen-Purcell-Pound (BPP) の式	日本熱測定学会第 50 回通常総会報告47
	幹事会のページ 52
光重合型コンポジットレジン 小林 広和 132	幹事会のページ 103
ドラッグデリバリーシステム 小林 広和 133	幹事会のページ 136
有機 1 次元細孔物質 小林 広和 133	幹事会のページ 177
棒状ミセル 山本 太郎 133	編集後記 62
ずり誘起構造 山本 太郎 133	編集後記 104
非平衡定常状態 山本 太郎 133	編集後記
CO ₂ センサー 橋本 拓也 172	
擬ファントホッフプロット 橋本 拓也 172	
グアニン四重鎖 (G4) 構造	「熱測定」解説原稿執筆上の注意
アプタマー	
SELEX 富田 恵麗沙, 川上 純司 172	
トロンビン結合アプタマー	
	総目次 Vol. 51 178
バイオマスプラスチック/液晶ポリマー (LCP)	
ステレオコンプレックスポリ乳酸 石井 大輔 173	
脂質ラフト 瀧上 隆智 173	
ブリュースター角顕微鏡 (BAM) 瀧上 隆智 173	
X線反射率法 瀧上 隆智 173	
強誘電相転移	
自発分極	
有機強誘電体 寺澤 有果菜, 喜久田 寿郎 174	
熱測ウウ田耳丸のページ	
熱測定応用研究のページ TC SDME 注による節見発生ガス会長	
TG-SPME 法による簡易発生ガス分析 	
チュートリアル	
- ネー・・・・・・	
溶液熱化学へのいざない II	
レポート	
第 26 回 IUPAC 化学熱力学国際会議	
中澤 康浩 ほか 38	
第 59 回熱測定討論会報告	
熱測定講習会 2024 -対面での装置を用いた実習が 5年ぶりに復活します!- 開催報告	
差田 直史 仝村 比呂志 山田 季人 増上 将担 175	