

温度変調 DSC (3)

猿山 靖夫

元·京都工芸繊維大学

(受取日:2022年5月30日,受理日:2022年6月6日)

Temperature Modulated DSC (3)

Yasuo Saruyama

previous affiliation: Kyoto Institute of Technology

(Received May 30, 2022; Accepted June 6, 2022)

Keywords: 一次相転移, 相転移温度分布

1. はじめに

今回のチュートリアルでは、一次相転移について述べる。 一次相転移の従来型 DSC による測定結果は理解しやすく、 確立した研究手段として使われている。一方、温度変調 DSC (TMDSC) による一次相転移の測定は、これまでに述 べた擬等温測定やベースラインの安定性などの特徴を通じ て、新しい知見が得られるが、試料の中で起こっている現 象をイメージしにくいことがある。今回は TMDSC による 一次相転移の測定について、基本的な考え方を説明する。

2. 測定例

TMDSC による一次相転移の測定で始めに浮かぶ疑問は, 融解・結晶化などの潜熱を伴う現象が起こっているときに, 周期的加熱で温度変調が起こるかというものである。Fig.1 と Fig.2 に,インジウム (In) (1 K h⁻¹, 428.8 K~429.7 K) とポリエチレン (PE) (0.4 K min⁻¹, 390.5 K~412.7 K)の測 定結果を示す。¹⁾これらは,試料の上部からの光照射で周 期的加熱をする,特殊な装置で測定された。²⁾図は測定試 料側のみを光照射したときの結果である。

Fig.1(a)は吸熱速度差の定常成分で,従来型 DSC と同じ 信号である。44 min~50 min 程度の時間範囲で急激な直線 的減少が起こっており,融解が進行中であることが分かる。 (b)は測定試料側の温度変調振幅である。融解中は振幅が著 しく小さく,ノイズレベルで0であると言える。Fig.2(a)は 測定試料側の温度変調振幅であり,Fig.1の(b)に当たる。 Fig.2(b),(c)は測定の線形性を調べた結果であるが,今回は 取り上げない。(a)では15 min~45 min 程度の範囲で窪みが 見られる。この時間域で融解が起こることは定常成分で確 認されている。PE では融解中に振幅は減少するが,0には ならないことが分かる。従って最初の疑問に対する実験的 回答は,温度変調が起こる場合も起こらない場合もあると いうことになる。

Fig.1 Results of In. (a) the steady component of the heat absoption rate, and (b) the amplitude of the modulated temperature. The modulation frequency was 0.1Hz.

Fig.2 Results of PE. Amplitude of (a) the first, (b) the second and (c) the third harmonic components of the modulated temperature. The modulation frequency was 0.1Hz

3. 相転移温度の分布

Fig.1(b)の結果は理解しやすい。In が二相共存状態である ときに正弦波的な周期的加熱をしたとする。半周期ずつの 吸熱と発熱が起こるが、吸発熱の量が僅かであるため、共 存比が小さく増減するだけで、常に相転移が継続している。 従って潜熱の効果で温度変調は起こらない。ただし、通常 の装置では参照試料側でも温度変調が起こるので、融解中 の吸熱速度差は0にはならない。

PE のような結晶性高分子の固体は極めて微細な結晶と 非晶の混合物であり,融点は微結晶毎に異なる。まず微結 晶を1個だけ含む仮想的な試料について考察する。微結晶 の融解は温度変調周期より遙かに短い時間で完了する。 Fig.3(a)は試料温度の時間依存性の模式図である。全体とし てゆっくりと昇温しながら,温度変調が起こっている。T_t が融点である。時刻 ti C T_tを低温側から過ぎると直ちに融

Fig.3 Schematic time dependence of the temperature of the sample including one fine crystal; (a) the curve with anomalous parts accompanying the phase transition, (b) the curve similar to (a) with negligible latent heat, and (c) the difference between (a) and (b).

解が始まり、短時間で完了する。(図では相転移の時間が実際より遙かに長く描いてある。)時刻 ½では高温側から T_iを過ぎるので結晶化が起こる。Fig.3(b)は潜熱が無視できるほど小さく、試料温度が熱容量のみで決まる場合である。 Fig.3(c)は(a)と(b)の差で、潜熱由来の温度異常である。(b)では結晶と非晶の比熱容量は互いに等しいとした。また、(c)では融解と結晶化の温度異常が同じ形で上下対称であるとした。なお、Fig.3 では昇降温を交互に繰り返す双方向の変調になっているが、Fig.2 の測定は温度勾配が常に正(heating only、常時昇温)で、勾配の大きさが振動的に変化するという変調になっている。常時昇温条件では T_iを1回しか通らないので、結晶化は起こらない。

実際の試料には莫大な数の微結晶が含まれる。各微結晶 の相転移温度は互いに異なるが,試料内の温度の非一様性 のために,融点が互いに近い微結晶の融解が同時に進行す る。相転移温度が連続的と見なせるほど密に分布している 場合には,Fig.3(c)のような温度変化が重なり合いながら隙 間なく並ぶ。従って,相転移由来の温度異常は,1個の微結 晶の温度異常が鋭い形であっても,試料全体としては緩や かに時間変化する形になる。同様に吸熱速度も緩やかな時 間依存性を示す。

4. 吸熱速度

前節で述べた,相転移温度の分布がある場合の,昇温速 度と吸熱速度の関係について考察する。温度 $T \sim T + \Delta T$ の 間に相転移点を持つ微結晶の数をnとする。 $n/\Delta T \epsilon \rho$ と書 き,相転移点密度と呼ぶことにする。 ρ の値は相転移温度 域外では0である。昇温して相転移が開始すると ρ は温度 と共に増加し,ピークを経て0に戻るので,融解温度域内 に極大値を持つ。また,1個の微結晶の潜熱の大きさをhと 書く。相転移に伴う測定試料の吸熱速度を j_{tr} とすれば,次 式の関係が成り立つ。

$$j_{\rm tr}\,\Delta\,t = h\rho\,\Delta\,T\tag{1}$$

 Δt は ΔT の温度変化にかかる時間である。一方,熱容量に よる測定試料側の吸熱速度を j_{hc} とすれば,次式が成り立つ。

$$j_{\rm hc}\,\Delta\,t = c\,\Delta\,T\tag{2}$$

c は結晶および非晶の熱容量である。従って、測定試料側 の全吸熱速度 *i* は、次式で与えられる。

$$j = j_{hc} + j_{tr} = (c + \rho h) \frac{dr}{dt}$$
 (3)
ここで、 $\Delta T / \Delta t \epsilon dT / dt \epsilon$ 書いた。(3)式は、相転移由来の

吸熱速度は,熱容量由来と同じ形に表されることを示して いる。昇温速度dT/dtが正のときは吸熱で融解,負は発熱で 結晶化に対応する。正弦波型の温度変調の場合には,昇温 速度は次式で表される。

$$\frac{dT}{dt} = \beta + \omega T_{a} \cos(\omega t + \theta_{T} + \pi/2)$$
(4)

βは定常的温度走査速度, T_a , ω , θ_T はそれぞれ温度変調の振幅, 角周波数, 初期位相である。(4)式から, $\beta < \omega T_a$ のときには昇温と降温を交互に繰り返す双方向の変調になり, $\beta \ge \omega T_a$ のときには常時昇温型の変調になることが分かる。(4)式を(3)式に代入すれば, 次式が得られる。

$$j = j_{\rm s} + j_{\rm m} \tag{5}$$

$$J_{s} = (c + \rho h)\beta$$

$$j_{m} = (c + \rho h)\omega T_{a}\cos(\omega t + \theta_{T} + \pi/2)$$
(6)

jsとjmは、それぞれjの定常成分と変調成分である。

(7)式の T_a が Fig.2(a)の温度振幅にあたる。Fig.2 の測定で 用いた装置では、 j_m が制御量である。 j_m は温度には依存せ ず、振幅一定の正弦関数的に変化する。 ρ は相転移温度域内 に極大値を持ち、 c, h, ω は温度変化が小さい、あるいは0で ある。従って、 T_a の値は相転移温度域内で極小値をもつと いう、Fig.2(a)の結果が理解できる。

通常の TMDSC では、 T_a がプログラムに従って一定値に なるように制御されている。従って、 j_m の振幅は、 ρ と同様 に、相転移温度域に極大値を持つ。測定される吸熱速度差 の変調成分は、 j_m と参照試料側の変調成分の差であるが、 後者は温度依存性が小さいので、測定される吸熱速度差の 振幅も極大を示す。チュートリアル1回目の Fig.1(b)³⁾に、 通常の TMDSC による PE の測定結果が示されている。

(6)式と(7)式には、熱容量と相転移の寄与が(*c* + *ph*)という共通な形で含まれている。このことから、吸熱速度の定常成分と変調成分の振幅が、定数倍の関係になっていると予想される。しかし、チュートリアル(1)の Fig.1(b)に示した定常成分と変調成分は、定数倍の関係になっておらず形が互いに異なる。これは、定常成分と変調成分では、*h*の値が互いに異なることに原因がある。このことは、次回のチュートリアル「温度変調周波数依存性」で説明する。

5. 補足のコメント

複雑な有機物や高分子では、h は変調周波数以外にも、 過熱度・過冷却度依存性、誘導時間、融解と結晶化の非対称性、緩和現象的時間依存性など、多様な要因に依存する。 しかし、h の値が時間および温度に対して一定と見なせる 場合には、変調成分の直感的理解の範囲で、 ρ についての 有効な研究を行うことができる。⁴⁾ また、高分子の融解お よび結晶化については、上記のいろいろな要因を詳細に解 析した、戸田ら⁵⁾による報告がある。また、相転移速度が 遅い場合などには、Inのように相転移温度の分布がない場 合でも、TMDSC で新たな知見が得られる可能性がある。 TMDSC による一次相転移の研究は、現在も広い発展の余 地を残している。

文 献

- 1) Y. Saruyama, Thermochim. Acta 304/305, 171-178 (1997).
- 2) M. Nishikawa and Y. Saruyama, Themochim. Acta 267, 75-
- 81 (1995). 3) 猿山靖夫, 熱測定 48 (1), 33-34 (2022).
- N. Koyabu, H. Yao, and Y. Saruyama, *Netsu Sokutei* W39, 20-22 (2012).
- 5) 戸田昭彦, 熱測定 26, 161-172 (1999); 引用文献に多く の研究例がある.