チュートリアル

熱分析をさらに活用するために(第3回)–高分子多成分系の結晶化–

吉田 博久

元 首都大学東京

For Better Use of Thermal Analysis Crystallization Behavior of Polymer Multicomponent System

Hirohisa Yoshida

Tokyo Metropolitan University

Keywords: crystallization, nucleation, crystal growth, surface energy, PVDF/PMMA blend, hyaluronic acid/water

1. はじめに

結晶化には、飽和溶液を冷却した過飽和状態で起こる場合と、溶融状態から融点(Tm)以下に冷却された過冷却状態で起こる場合とがある。熱分析で観察するのは、溶融状態からの結晶化がほとんどなので、ここでは過冷却状態での結晶化の解析について述べる。過冷却状態で起こる結晶化には、溶融状態からの冷却過程で起こる結晶化に加え、ガラス状態からの昇温過程で観察される冷結晶化や融点近傍で観察される再秩序化や融解・再結晶化も含まれる。高分子の結晶化は、液体状態の分子が結晶成長面に拡散・移動することが必要なので、並進運動が可能なガラス転移温度(Tg)からTmの過冷却液体状態で観察される。結晶核の前駆体になる微小な凝集体は、Tg以下の温度でも形成するので、ガラス状態での熱履歴が過冷却液体状態での結晶化(特に核形成過程)に影響を及ぼすこともある。

結晶化は融解とは逆の現象であるが,熱力学的な相転移 である融解とは異なり、凝集体形成や分子の拡散・移動を 伴う速度論的な過程である。そのため、結晶化速度(核形 成速度や結晶成長速度)が現象を理解する上で鍵となる。 結晶化は過冷却状態で起こるため、過冷却液体(SL)状態 と結晶(C)状態のギブスエネルギー差($\Delta G = G_{SL} - G_C$) が結晶化の駆動力となる。過冷却度 $(\Delta T = T_m - T_c)$ $(T_c;$ 結晶化温度)が小さいと、核形成頻度が少なく成長速度が 遅くなり、大きな結晶ができる。ΔTが大きいと、核形成頻 度は多くなり成長速度は早くなって,微結晶が多くできる。 この様な結晶化の温度依存性は、Tm に近い過冷却液体の 粘度が低い温度領域で観察される。一方 Tg に近い温度で は温度低下に伴って粘度が高くなるため,分子の拡散が著 しく遅くなり結晶化は起こり難くなる。そのため結晶化速 度は Tgと Tm との温度領域で上に凸の温度依存性を示す。 結晶化は温度や過冷却液体の粘度以外に,分子周辺の環

境の影響を受ける。均一な液体状態から結晶核が発生する 「均一核生成」で結晶化が進行する場合よりも,界面やす でに存在する結晶などの不純物表面で核形成が起こる「不 均一核形成」の方が、核形成のポテンシャルエネルギーが 低くなるため早く結晶化は進行する。多成分系では、相互 作用している分子間を拡散・移動するため、結晶化速度は 混合状態を反映し、単成分系の結晶化速度と比較すること で混合状態や相互作用を評価することができる。

結晶化を観察する方法には、熱分析以外に顕微鏡などの モルフォロジー観察、X線回折などの散乱・回折法、赤外 吸収スペクトル (IR) などの分光法、体積や密度測定など がある。最も利用されているのは、溶融状態あるいはガラ ス状態から T_c まで早く温度変化させて等温状態で測定す る方法である。温度変化の過程で結晶化が開始しない速度 で温度走査しなくてはならないので、少量の試料で測定す ることが求められる。DSC や IR、高輝度のX線源を用い る X線回折が有利である。結晶化は速度論的な過程なの で走査速度の影響を受け、等温測定のみならず非等温測定 での解析も可能で、その点でも熱分析(特にDSC)は有利 な測定手法である。

2. 結晶化メカニズム

結晶化は核形成過程と結晶成長過程(成長過程)で構成 される。成長過程には結晶表面で核形成が起こる「二次核 形成」を含むので、最初の過冷却液体状態からの核形成過 程を「一次核形成」過程とする。結晶化終了後に温度を下 げた時に起こる結晶の秩序化を「二次結晶化」と呼び、成 長過程とは区別する。高分子の結晶化過程を模式的に Fig.1 に示す。

ー次核形成過程は液体状態のランダムな分子配置(A) から,結晶に類似した秩序の凝集体(B)が形成される過 程で,凝集体(核)形成によってギブスエネルギーは減少 する。しかし核形成によって新たな固液界面が表れるので, 表面自由エネルギーが生じる。核形成によるギブスエネル ギー変化は,凝集体形成による自由エネルギーの得(安定 化)と生成した表面自由エネルギーの損(不安定化)の和 で示される。例えば,半径rの球状の核が形成する時のギ ブスエネルギー変化は(1)式のようになる。

© 2019 The Japan Society of Calorimetry and Thermal Analysis

$$\Delta G(r) = -\frac{4}{3n}\pi r^3 \Delta \mu + 4\pi r^2 \sigma \tag{1}$$

ここで、vは1分子の体積、 $\Delta \mu$ は核形成する温度での過冷 却液体状態と結晶状態の1分子のギブスエネルギー差、 σ は界面自由エネルギーである。(1)式は、 $r^* = 2v\sigma/\Delta \mu$ に極大値を持ち、 r^* よりも小さい核は、表面自由エネルギ ーの効果で大きくなると $\Delta G(r)$ は増加し、不安定になるた め生成しても消滅する。臨界サイズ r^* よりも大きい核は、 成長すると $\Delta G(r)$ が減少するので、結晶へと成長すること ができるようになる。核形成過程では、小さい核が形成し ては消滅し、臨界サイズよりも大きな核が形成すると生き 残って結晶成長を開始する。

Fig.1 Schematic crystallization model of polymer. Nucleation process; Primal nuclear with thickness l_p (B) are formed from supercooled liquid state (A). Crystal growth process consists of molecule diffusion to the crystal growth surface (C) and adsorption and surface diffusion of molecule on growth surface (D). Spherulite growth; one dimensional growth of lamellar crystal to ribbon-like lamellar (E). Secondary nucleation process (F).

高分子結晶は分子鎖が折りたたまれたラメラ結晶なの で、分子断面積aの高分子鎖がn本凝集した厚さ l_p の核(B) が形成する時のギブスエネルギー変化 (ΔG_p) は(2)式のよ うになる。

$$\Delta G_p = 2na\sigma_e + C\sqrt{nal_p\sigma_s - nal_p\Delta\mu} \tag{2}$$

ここで、 σ_e は折りたたみ面の界面自由エネルギー、 σ_s は側面の界面自由エネルギー、Cは形状因子(立方体では4、円柱型では2 $\sqrt{\pi}$)である。(2)式の $\Delta G_p \epsilon \sqrt{na} \ge l_p$ で微分する と極小値が求まる。 ΔG_p が極小となる臨界核の大きさは、 $l_p^* = 4\sigma_e/\Delta\mu, \sqrt{n^*a} = C\sigma_s/\Delta\mu$ で、極小値を超えると ΔG_p は減少し、核は一定の厚さ l_p^* で成長する。すなわち均一核形成条件では、厚さが一定の核が順次形成し成長することを示唆する。

高分子結晶の成長過程は,周辺の過冷却液体状態の高分 子鎖が結晶の成長面に拡散し(C:拡散過程),成長面に吸 着し(D:吸着過程),成長面上を拡散して(D:面内拡散 過程)格子点に繰り込まれる過程で構成される。均一核形 成でできたラメラ結晶が一定の厚さで成長すると,リボン 状結晶(E)となり球晶を形成する。成長過程の後期には, ラメラ結晶の成長面に二次核(F)が発生し、二次核の発 生速度と成長面内での成長速度のバランスで、結晶のモル フォロジーが変化する。例えば、二次核の発生速度が面内 成長速度よりも早いと樹脂状の結晶になり、逆の場合は形 状の整った単一な結晶が形成される。結晶化の律速過程は、 高分子では拡散過程、金属では面内拡散過程、水では一次 核形成過程になる。

結晶化の解析

結晶化は、等温条件(等温結晶化)あるいは温度走査条件(非等温結晶化)で測定する。金属や有機低分子の様に結晶化が狭い温度領域で起こる物質では、等温結晶化が観察できる温度領域が1~2Kと狭いので、非等温結晶化で測定すると良い。等温結晶化は、高分子の様に結晶化速度が10K以上の広い温度依存性を持つ場合に適している。等温結晶化の条件を選択するためにも、溶融状態から冷却条件で測定しておくと良い。結晶化の解析には、結晶成長の次元が反映するAvrani指数の評価が一般的であるが、 多成分系の混合状態を考えるには結晶化速度の温度依存性を評価する方が便利である。

非等温結晶化:高分子の場合,冷却測定は平衡融点(Tm) 以上の温度から定速で走査する。ポリエチレンオキシド (PEO:重合度 121, T⁰_m = 72.5 ℃)を 80 ℃から高速走査 が可能な Chip DSC を使って, 走査速度 10~1000 K sec-1 で測定した。通常の DSC で 2~50 K min⁻¹ で測定するので も構わない。測定された結晶化発熱の立上り温度(Tonset) とピーク温度(T_p)を読み取る。発熱ピークは臨界核が形 成され結晶成長過程になると観察されるので、Tonsetは臨 界核が形成された温度,Tnは成長速度が最大になる温度に 対応する。 $T_{onset} - T_p$ を走査速度 (dT/dt) で割った平均成 長速度 $(G_{av}^* = (T_{onset} - T_p)/(dT/dt))$ を結晶化温度 $(T_c = (T_{onset} + T_p)/2)$ に対して示したのが Fig.2 である。平均成 長速度は、TgとTmとの温度領域で上に凸の温度依存性を 示す。同じ分子量の PEO を使ったブロック共重合体は, PEO が直径 10 nm の棒状シリンダーを形成する。ナノ空 間に閉じ込められ片末端が固定されて運動が制限された PEO の T_m^0 は 20 $^{\circ}$ C低くなり、同じ方法で G_{av}^* を求めると同 じΔTで 1/10 程度になり、ナノ空間での結晶化は核形成と 成長の両方が遅くなる。

Fig.2 Temperature dependence of average crystal growth rate of PEO obtained by cooling measurement from 80 °C at various cooling rates, from 10 K s⁻¹ to 1000 K s⁻¹.

等温結晶化: T⁰_m以上の温度から T_cまで定速で冷却し等 温に保持する。冷却過程で結晶化が観察されない冷却速度 と T_cを選択する。冷却速度が早いほど測定できる結晶化 温度領域が広がるが、10 K min⁻¹で冷却しても等温結晶化 の測定は可能である。大事な点は、冷却中に結晶化発熱が 観察されない条件を選択することである。温度変化が冷却 から等温になった時間から発熱が開始する時間までを核 形成時間 (t_N) として核形成速度 $(N^* = 1/t_N)$ を求める。 さらに発熱開始時間から発熱ピークまでの時間を成長時 間 (t_G) として成長速度 $(G^* = 1/t_G)$ を求める。

4.2 成分系の結晶化(高分子/高分子系)

結晶性高分子のポリフッ化ビニリデン(PVDF)と非晶 性高分子のポリメタクリル酸エステルのブレンド系の混 合状態を,等温結晶化の解析から検討した。¹⁾ PVDFのフ ッ素とアタクチックポリメタクリル酸メチル(at-PMMA) のエステル酸素との間に強い相互作用が働き相溶するが, エステル基がエチル(PEMA), *iso*-プロピル(PiPMA), *ter*-ブチル(PtBMA)と大きくなると,立体障害のため分子間 相互作用が阻害され,混合状態が変化する。 T_m^0 と組成の 関係から西-Wang 式で求めた相互作用の強さは at-PMMA \approx PEMA < PiPMA < PtBMA であった。またこれらの系は LCST 型の相図を示し,臨界点組成は $\phi_{PMMA}=0.6$ 付近であ る。²⁾臨界点温度は PVDF/at-PMMA では融点よりも 50 K ほど高いが,相溶性が低下すると臨界点温度は融点に近づ き,結晶化を測定するために融点以上に昇温し,共存曲線 の内側の温度で保持すると相分離が進行する。

等温結晶化では、 T_m^0 以上の温度(T_s)から過冷却液体 状態の T_c まで冷却するので、最もブレンド系の粘度が低 い T_s での混合状態を反映した結晶化が起こると考えられ る。相溶系の PVDF/PMMA や PVDF/PEMA では結晶化は 均 ー な相溶 状態 で起こるのに対し、相分離系の PVDF/PtBMA や PVDF/PiPMA では T_s で相分離が進行し、 PVDF 組成の高い相 (PVDF-rich 相)で結晶化が進行する。 結晶化する分子周辺の環境が結晶化速度に影響を及ぼす ので、ブレンド系では結晶化が生じる相の組成や相互作用 の大きさが、 $N^* \phi G^*$ さらに形成した結晶の界面自由エネ ルギーに影響する。

PVDF ブレンド系の各試料を, T_m^0 以上の温度で5分保持してから10Kmin⁻¹で T_c まで冷却し,等温に保持して結晶化発熱を測定した。冷却途中で発熱が観察される場合は解析から除外し, T_c に到達した後に測定された結晶化発熱から $t_N \ge t_c$ を求め, $N^* \ge G^*$ の組成ならびに温度依存性を評価した。PVDF/PMMA $\ge PVDF/PiPMA$ の N^* のブレンド組成(ϕ_{PMMA})依存性を過冷却度($\Delta T = T_m^o - T_c$)に対してFig.3に示す。相溶系のPVDF/PMMA(A)では、 ϕ_{PMMA} 依存性はほとんど認められず、 ϕ_{PMMA} が0.1から0.4では N^* は同じ温度依存性を示す。同じブレンド系の G^* の ϕ_{PMMA} 依存性を ΔT に対してFig.4 に示す。PVDF/PMMA

(A)の G^* は ϕ_{PMMA} に依存して ΔT が変化するが, PVDF/PiPMA (B)では ϕ_{PMMA} に依存せず同じような ΔT を示す。すなわち、 N^* と G^* は相溶系では ϕ が増加すると ΔT が大きくなり、非相溶系では ϕ_{PMMA} の影響を受けずに ΔT は同じ様な変化をするという、それぞれのブレンド系の混合状態を反映した振る舞いをする。

Fig.4 に示した *G**を例に各ブレンド系の混合状態を評価してみよう。 すべての φ_{PMMA} で実測データのある *G** = 0.005 s⁻¹ (**Fig.4** に実線で示す) での Δ*T* を読み取る。 各組成での T_m^0 で割った値 ($\Delta T_{G=0.005}/T_m^0$)を φ_{PMMA}に対し て示したのが **Fig.5** である。過冷却状態の*T_C*で結晶化が起こるときの過冷却液体状態と結晶状態のモルあたりのギブスエネルギー(化学ポテンシャル)変化 Δμ は次式で示される。

Fig.3 Temperature dependence of nucleation rate (N^*) for PVDF/PMMA (A) and PVDF/PiPMA (B) blend systems with various blend content.

Fig.4 Temperature dependence of growth rate (G^*) for PVDF/PMMA (A) and PVDF/PiPMA (B) blend systems with various blend content.

Fig.5 Blend fraction ϕ dependence of degree of super cooling at $G^* = 0.005 \text{ s}^{-1}$ normalized by T_m^0 for PVDF blend systems, PVDF/PMMA (\bigcirc), PVDF/PEMA (\bullet), PVDF/PiPMA (\Box), PVDF/PtBA (\blacksquare) and PVDF (\triangle).

$$\Delta \mu = \Delta h_m (\Delta T_{G=0.005} / T_m^0) \tag{3}$$

ここで、 Δh_m はモル融解エンタルピーである。Fig.5 の縦 軸は $G^* = 0.005 \text{ s}^{-1}$ になる時の駆動力に相当し、過冷却液 体状態の PVDF 分子が絡み合いや分子間相互作用をかい くぐって成長面に拡散・移動するのに必要な自由エネル ギーに相当する。相溶系の PVDF/PMMA や PVDF/PEMA では、引力的な相互作用をする分子が ϕ と共に増えて結晶 成長が遅くなるのに対し、非相溶系の PVDF/PiPMA や PVDF/PtBMA では $T_{\rm s}$ で相分離した PVDF-rich 相の ϕ PvDF は 同じなので結晶成長は変化しない。Fig.5 の各ブレンド系 での傾きは相互作用の強さに対応し、at-PMMA \approx PEMA < PiPMA < PtBMA で、 $T_m^0 \ge \phi$ PMMA の関係から求めた順番と 一致する。同様の解析は N^* についても可能で、 G^* の Fig.5 と同様な結果が得られる。

多成分系の結晶化の解析は上で述べた方法に加え, N* と, G*から独立に過冷却液体/結晶の界面自由エネルギー (σ_e, σ_s)を評価することができ, そのφ_{PMMA} 依存性は **Fig.5** に示した結果と同様になる。結晶化過程をDSC-フーリエ 変換赤外吸収スペクトル (FTIR) 同時測定で測定すると, FTIR からは結晶化に伴うコンホメーション変化が評価で き, DSC と FTIR の結果から混合状態の濃度ゆらぎに関す る情報を得ることができる。^{3,4)}

5.2 成分系の結晶化(高分子/水系)

ヒアルロン酸ナトリウム(HA)/水系には水分率(Wc= Wwater/WHA)に応じて,性質の異なる自由水,束縛水,不 凍水が存在する。HA/水系の自由水と束縛水の状態を等温 結晶化の解析から検討する。水の結晶化発熱は大きいので, 水を含む試料では試料中の水の量が1mg以下になるよう にサンプリングすると良い。

室温から 10 K min⁻¹で冷却した時の,Wc の異なる HA/ 水系と水の DSC 曲線を Fig.6 に示す。Wc が 1.2 (水の質 量分率 ϕ water; 0.53) と 2.1 (ϕ water; 0.68) では束縛水が,14 (ϕ water; 0.93) では自由水が,結晶化において主な役割を 果たす。自由水は T_m が T_c に依存しない安定結晶を形成す るのに対し,束縛水の T_m は T_c に依存する準安定結晶であ る。異なる T_c での T_m の Hoffman-Weaks プロットから求め た T_m^0 は、273.15 K (水)、268.2 K (Wc = 14)、267.1 K (Wc = 2.1)、264.3 K (Wc = 1.2) である。⁵⁾前回の Fig.4⁶⁾から 繰り返し単位当たりの不凍水と束縛水の分子数を求める と,Wc = 1.2 では不凍水が 10 分子、束縛水が 14 分子に、 Wc = 2.1 では不凍水が 14 分子、束縛水が 24 分子になる。

結晶化発熱の立上り温度が最も低いのは水で、Wc=1.2 と 2.1 の束縛水、Wc = 14 の自由水の順に高くなる。10 K min⁻¹で冷却すると、水は 18 K 程度の ΔT を示し急速に 結晶化してシャープな発熱を示す。水の結晶化の ΔT が大 きいのは、氷の密度が水の密度よりも小さいことによる。 氷は4配位なのに対し、水は最大で4.4配位のクラスター を形成している。核形成するには、余分な配位数の水分子 の水素結合を切断して再配列するため大きな ΔT が必要に なる。Wc = 14 の自由水の ΔT は水よりもはるかに小さい が、発熱ピークは水に次いで鋭い。不凍水に対して束縛水 が少ないWc = 1.2 は、Wc = 2.1よりも結晶化発熱の立上 り温度は低くなり、発熱ピークはブロードになる。

303 K から T_c まで 10 K min⁻¹ で冷却し等温結晶化発熱を 測定し、 N^* と G^* を評価した。水は ΔT が大きく、 N^* は自由 水や束縛水よりも遅く、 G^* は最も早い。Fig.7 に G^* を ΔT に 対して示す。水や自由水、Wc=2.1 の束縛水は、Fig.4 に示 した PVDF と同じ N^* の温度依存性を示す。Wc = 14 の自 由水は、水とは異なり ΔT が小さく N^* は最も早く、また G^* は水と同程度の早さである。自由水は水よりも核形成し 易く結晶成長も早い。結晶化速度が遅い高分子の結晶化を 早くするために、結晶化促進剤や造核剤が用いられる。こ れらは核形成速度を早くするもので、多くはその表面に分 子を凝集させて結晶化を促進する。HA/水系の自由水の核 形成が早くなるのは、これとは異なり自由水はクラスター サイズや会合数、水素結合の強度などの会合状態が、水と 異なり運動性が高いことが原因と考えられる。

Wc=1.2の束縛水は N^{*}と G^{*}どちらも最も遅く,温度依存性を示さない。Wc = 1.2 は昇温過程の T_g 以上の温度で冷結晶化を示し、束縛水の一部が冷却過程ですべて結晶化せずに一部が不凍水と同じ振る舞いをする。Wc=1.2の束縛水は HA 分子に強く相互作用していると考えられる。一方Wc=2.1の束縛水は,N^{*}は自由水よりも遅いが G^{*}は自由水と同程度に早い。HA/水系の標準融解エンタルピー(ΔH_m*;Wc>2では312.2Jg⁻¹,Wc<2では278.4Jg⁻¹)が異なることからも、HA/水系の束縛水の運動性がWc=2

で異なると考えられる。HA/水系の束縛水のG*は、他の

Fig.6 DSC cooling curves of hyaluronic acid/water systems with Wc = 14, 2.1, 1.2 and pure water at 10 K min⁻¹.

Fig.7 Relationship between G^* and ΔT for hyaluronic acid/water systems with Wc = 14 (\bigcirc), 2.1 (\Box), 1.2 (\blacksquare) and pure water (\bigcirc).

多糖ハイドロゲルの束縛水の G*(例えばキサンタン/水系 で~0.2 S⁻¹) と比較しても遅く,柔軟な多糖である HA と 水との相互作用が強いことや,水の運動に対する柔軟な HA ネットワークによる空間的な抑制が強いことが原因と 考えられる。

6. まとめ

高分子の結晶化メカニズムと,核形成速度ならびに成長 速度の評価方法について述べた。核形成速度と成長速度の 組成依存から高分子ブレンド系の混合状態が評価でき, HA/水系の水の結晶化速度から自由水や束縛水の状態を 考察する方法を述べた。

文 献

- 張公正,北村臣将,河合是,吉田博久,熱測定 29, 192 (2002).
- H. Sasaki, P. K. Bala, and H. Yoshida, *Polymer* 25, 4805 (1995).
- 3) 吉田博久, 接着 48, 15 (2004).
- 4) 鄭先玲, 吉田博久, 熱測定 34, 223 (2007).
- H. Yoshida, T. Hatakeyama, and H. Hatakeyama, "Cellulose; Structural and functional aspects", Elis Horwood Lim, (ISBN O-13-121971-5), p305 (1990).
- 6) 吉田博久, 熱測定 46, 148 (2019).