

無機塩を添加したアミン,アルコール各溶液の ガラス転移と溶媒和構造

寺島 幸生

鳴門教育大学

(受取日:2019年2月14日,受理日:2019年3月13日)

Glass Transition and Solvation Structure of Amine and Alcohol Solutions with Inorganic Salts

Yukio Terashima

Naruto University of Education

(Received Feb. 14, 2019; Accepted Mar. 13, 2019)

We have investigated the relationship between the thermodynamic and kinetic properties of the glass transition and solvation structure for simple amine and alcohol solutions of inorganic salts by using differential-scanning calorimetry (DSC) and Raman spectroscopy. Although the glass transition temperature (T_g) increases with the addition of salts in common, the concentration dependence of the heat-capacity change (ΔC_p) at T_g and the kinetic fragility index (*m*) are quite different for the amine and alcohol solutions. The thermodynamic and kinetic properties depend more strongly on the solvents than on the solutes. From Raman results, the structural-breaking effect of adding ions on the hydrogen-bonding structure is found to be quite different between the amine and alcohol solutions. By comparing the DSC data with the Raman results, we suggest that the glass-transition thermodynamics and kinetics are controlled mainly by the strength or stability of hydrogen-bond structures and the properties of dominant intermolecular interactions in the solutions.

Keywords: glass transition, fragility, solvation structure, hydrogen-bond, DSC

1. はじめに

過冷却液体の動的性質や構造は、粘度や緩和時間の非 Arrhenius 性を示す指標、フラジリティによって記述、分類 される。ガラス転移温度 T_g で規格化された緩和時間または 粘度の Arrhenius プロットの T_g での傾きとして定義される フラジリティ m は、 T_g 近傍における過冷却液体の分子運動 の温度変化を特徴付ける。¹⁾一般に、共有結合や水素結合 などの異方的な相互作用が支配的で、3 次元的なネットワ ーク構造が形成される系の多くは、mが比較的小さく strong な液体と呼ばれる一方、クーロン相互作用やファンデルワ ールス力などの等方的な相互作用が支配的な系の多くは、 比較的大きな m を示し、fragile な液体に分類される。²⁾例

えば, SiO₂(m = 20)は典型的な strong 液体であり, *o*-terphenyl (m = 81) は代表例な fragile 液体である。¹⁾ フラジリティ は誘電緩和測定³⁾ や粘度測定⁴⁾に加えて,示差走査熱量測 定(DSC) により熱分析の手法からも推定される。⁵⁾

ガラス転移温度 T_gは、平衡液体から分子運動が凍結した 非平衡なガラス状態へ、あるいはその逆の変化が起こる温 度であり、DSC では、ガラスと液体の熱容量の差に由来し て、熱流ベースラインにジャンプが観測される。融点や沸 点と同様に、T_g は物質や分子間相互作用に依存するが、^{1.6} 多くの低分子性物質において融点 T_mの 2/3 程度であること が経験的に知られている。⁷⁾ また,分子量が大きい液体ほ ど粘性が高く,類似の分子サイズ,分子骨格であれば,分 子内に水酸基などの水素結合性置換基の多い物質ほど T_g が高い傾向にある。

 T_g におけるガラスと液体の熱容量差 ΔC_p は, 配置エンタ ルピーの温度微分に対応し、ガラス転移における構造及び 分子運動の変化の度合いを反映する。経験的には, fragile 液 体は strong 液体と比べて構造的に不安定であり、ガラスか ら液体へ転移する際の顕著な構造変化に起因して比較的大 きな配置熱容量を有する。一般に、ガラスの熱容量および その温度変化は、液体のそれらよりも小さいため、ΔCpは 主として液体の熱容量に依存すると考えられる。例えば、 ある種の球状のアルコールでは、ΔCp が液体の分子運動の 自由度や会合状態を反映することが報告されている。⁸⁾主 に緩和時間や粘度の温度変化から得られるフラジリティ m が動的フラジリティと呼ばれるのに対し, ΔC_p は熱力学的 なフラジリティの尺度と見なされ,6.7.9) mの傾向と類似し て, strong 液体の ΔC_p は小さく, fragile 液体は比較的大き な ΔCp を示す。しかし、アルコールなどの水素結合性液体 は、中程度の m を示す一方でΔCp が比較的大きく,10) フラ ジリティの物理的起源は完全に解明されていない。

© 2019 The Japan Society of Calorimetry and Thermal Analysis 61

ガラス転移やフラジリティに関する研究の多くは、純物 質や混和性2成分液体などを対象とし、^{57,11-13}) 無機塩を添 加した低分子性非水溶液系の研究は比較的少ない。水溶液 系では、多くの無機塩の溶解度が高く、幅広い濃度範囲を 実現できるが、水が低温で結晶化しやすいため、幅広い過 冷却温度域やガラス状態を実現することが難しい。一方、 アルコール系は、水よりも過冷却しやすくガラスを形成す るが、無機塩の溶解度が小さく、多様な濃度の溶液を調製 することが難しい。

そこで著者らは、比較的構造が単純な無機塩を低分子の アルコール、アミンに溶解させて、その溶解度やガラス形 成能を調査した。その結果, LiClO4, NaClO4, LiBF4, NaBF4 などの無機塩は、1,2-プロパンジオール、グリセロール、1,2-プロパンジアミンなどのアルコールやアミンに溶けやすく, その溶液は結晶化や相分離をしないで容易に過冷却、ガラ ス化することが判明した。14-16) このような溶液では、幅広 く塩濃度を変えて溶液内の支配的な分子間相互作用を調整 することができ, さらに広範囲の過冷却温度域での観測が 可能である。したがって、液体のフラジリティやガラス転 移がどのように分子間相互作用に依存するのか、系統的に 詳しく調べることができる。水素結合性液体に無機塩を添 加した溶液では、溶媒分子間、イオン-溶媒間、イオン-イオン間の各相互作用が共存、競合し、塩の性質や濃度に よって液体の構造が変化することが予想される。 例えば, ClO4⁻のような比較的かさ高く電荷密度が小さいアニオン は,水やアルコールの水素結合構造を破壊する効果を示 ナ_。 17,18)

これまでの研究により、無機塩を添加したアミン、アル コール各溶液では、濃度によって変化する溶液内の支配的 な分子間相互作用が、ガラス転移やフラジリティに反映さ れることが確認された。^{14-16,19-25)}本稿では、これまでに報 告した各溶液の結果を整理し、 T_g 、 ΔC_p 、m および水素結合 に対する塩添加効果を溶液間で比較しながら、溶液のガラ ス転移やフラジリティと溶媒和構造との関連性について解 説する。

溶液と実験方法

1,2-プロパンジオール CH₂(OH)CH(OH)CH₃(分子量 76.10, 以下 12PDO), グリセロール CH₂(OH)CH(OH)CH₂(OH)(分 子量 92.09,以下 Gly)は、それぞれ水酸基 2 つ、3 つを分 子内に有する炭素数 3 の低分子の多価アルコールである。 また、1,2-プロパンジアミン CH₂(NH₂)CH(NH₂)CH₃(分子量 74.12,以下 12PDA)は、12PDOの水酸基がアミノ基に置 き換わった多価アミンである。各液体とも幅広い冷却/昇 温速度で過冷却しやすく、ガラス転移を観測できる。

本実験では、市販の12PDO(純度>99%)、Gly(純度> 99%)、12PDA(純度>95%)を金属Naで脱水後、真空蒸 留により精製したものを溶媒として用いた。溶質には、市 販のNaClO4(純度>98%)およびLiBF4(純度>97%) を購入したまま使用した。(NaClO4)x(12PDA)1-x, (NaClO4)x(12PDO)1-x, (LiBF4)x(12PDO)1-x, (NaClO4)x(Gly)1-x

(x は塩のモル分率)の4 種類の溶液に対し,室温の溶解 度上限までの各濃度の試料を調製した。水や CO2の混入を 最小限に抑えるために,乾燥窒素雰囲気下で溶媒,溶質を 混合し,均質になるまで室温で6時間以上撹拌した。

各溶液 3~6 mg を DSC 用アルミ製試料容器に密封し,入 力補償型示差走査熱量計 (DSC8500, PerkinElmer, Inc.)を用 いて, He ガス流下で DSC 測定を行った。各試料を 298 K から 100 K まで 100 K min⁻¹で急冷してガラス化した後, +10 K min⁻¹の昇温過程でガラス転移を観測し,ガラス転移 の補外開始温度 T_g とエンタルピー回復後の補外終了温度 T_{g} off および T_{g} での熱容量変化 ΔC_{p} を各々決定した。

フラジリティ m を推算するために、 T_g の走査速度依存性 を測定した。室温から 323 K まで加熱して 3 分間保持した 各液体試料を、 $\beta = 5-100$ K min⁻¹の速度で 120 K (< T_g)ま で冷却後、1 分間保持してガラス化した。このガラス試料 に対して、冷却時と同じ速度 β で再加熱する昇温過程でガ ラス転移を観測し、各 β での T_g を決定した。

各溶液の水素結合やイオン会合の各状態を推定するため に、各溶液のラマンスペクトルをレーザーラマン分光計

(Ramanor U1000, Horiba Jobin Yvon)でAr⁺イオンレーザー励起光(λ=514.5 nm, 300 mW)を用いて測定した。100-300 K の温度範囲で,4000-100 cm⁻¹の波数域のストークスラマンスペクトルを90°散乱方向で測定した。

ガラス転移に見られる塩添加効果

3.1 DSC 曲線

急冷試料に対する昇温速度+10 K min⁻¹ での DSC 測定の 結果,各溶液の全濃度において、単一のガラス転移を示す 吸熱側へのベースラインシフトが明瞭に観測された。Fig.1 では,各溶液 x=0,0.30の試料で得られた結果を,比較の ためにサンプル質量で規格化して熱容量 J K⁻¹ g⁻¹単位で例 示している。ガラス転移領域外の曲線は、見やすくするた めに省略されているが、 T_g 以下での結晶化や相分離などを 示す熱異常は確認されなかった。

12PDA のガラス転移は、12PDO や Gly の場合と比べて、 ベースラインシフトが大きく、ガラス転移開始から終了ま での温度幅 $\Delta T_g = T_g^{\text{off}} - T_g$ が小さい。12PDA では、12PDO や Gly よりもガラス転移が急激に進行しているが、塩添加 に伴ってベースラインシフトが次第に不明瞭化し、転移の 進行が緩やかになる。(NaClO4)x(12PDA)_{1-x}では、ガラス転 移後に結晶化による発熱ピークも観察されたが、12PDO, Gly 各溶液では、全濃度において結晶化による熱異常は観 測されなかった。これらのアルコール溶液は、12PDA 溶液

Fig.1 DSC heating curves for glass transitions at x = 0 and 0.30 for each mixture, obtained at 10 K min⁻¹. Each curve is normalized by the sample mass and is offset vertically for clarity.

Fig.2 Concentration dependence of T_g for each mixture. Broken lines are to guide the eye. Arrows indicate inflection points expected for each solution.

と比べて幅広い過冷却領域を有し、ガラス形成能が高いと 言える。この結果は、アルコールが比較的強い分子間水素 結合によって、液体中で3次元的なネットワーク構造を形 成し安定化するという一般的な傾向と整合している。

3.2 ガラス転移温度 Tg

DSC 測定の結果から、12PDA、12PDO、GlyのTgは各々 144.1 K, 167.3 K, 189.6 K と決定された。^{20-22,24)} いずれも多 くの低分子性物質で成り立つ経験則 Tg = (2/3)Tm に概ね従 っている。各系の T_g の塩濃度依存性をFig.2に示す。共通 して、塩添加に伴って Tgは上昇するが、その傾向は各溶液 で若干異なっている。(NaClO₄)_x(12PDA)_{I-x}の T_gは, x=0.20 付近に最大勾配をもつS字形の急激な上昇を示し、溶解度 上限で188.8Kに達する。^{16,24)}一方, (NaClO₄)_x(12PDO)_{1-x}, $(LiBF_4)_x(12PDO)_{1-x}$, $(NaClO_4)_x(Gly)_{1-x}$ の T_g は, 各々x = 0.10, 0.25, 0.15 付近にプラトーの存在を示唆する比較的緩やか な上昇を示し,溶解度上限で各々192.6,198.3,208.9 K に 達する。24) Tgの濃度依存性は各溶液で一致しないが, 共通 してある中間濃度域で変曲点の存在が示唆される。このよ うな変曲点は、溶液内の支配的な相互作用のクロスオーバ ーとして解釈され、今回の溶液では、低塩濃度で支配的な 溶媒分子間水素結合と、高塩濃度で支配的となるイオンー 溶媒またはイオン-イオン相互作用のクロスオーバーに起 因すると推察される。14-16)

3.3 熱容量変化 ΔC_p

Fig.3は、各溶液の ΔC_p の濃度依存性を示す。比較のため に、 ΔC_p 値は各溶媒のモル単位で表示されている。12PDA、 12PDO、 Gly の各 ΔC_p 値は各々99.5、71.0、85.9 J K⁻¹ mol⁻¹ と決定された。²⁴⁾ 熱容量の絶対値が物質よって異なるため、 定量的な議論は難しいが、 ΔC_p の大小関係から、 T_g 以上で の分子運動の自由度や会合状態の連続的な変化の度合いは、 12PDA > Gly > 12PDO の順に大きいことが推測される。一 般的に、 ΔC_p が主に液体の熱容量に支配されることを考慮 すると、液体の熱容量も 12PDA > Gly > 12PDO の順に大き いと予想される。

 ΔC_p の濃度依存性は、アミン、アルコール両溶液で全く 反対の挙動を示している。(NaClO4)_x(12PDA)_{1-x}の ΔC_p は、 x = 0.10-0.20の濃度範囲で急激に減少し、x > 0.20では約 74.5 J K⁻¹ mol⁻¹でほぼ一定となる。一方、アルコール溶液 の ΔC_p は逆に増加して S 字状の濃度変化を示す。 (NaClO4)_x(12PDO)_{1-x}, (LiBF4)_x(12PDO)_{1-x}, (NaClO4)_x(Gly)_{1-x} の各 ΔC_p 値は、各溶解度上限で、それぞれ 90.8、134.0、115.3

Fig.3 Concentration dependence of ΔC_p at T_g for each mixture. Broken lines are to guide the eye.

J K⁻¹ mol⁻¹まで増加している。(LiBF4) $x(12PDO)_{1-x}$ の濃度範囲 (x=0-0.50) は4 溶液中で最も広く、塩添加による ΔC_p の変化幅も4 溶液中で最大である。

3.4 フラジリティ*m*

ガラス転移は、非平衡状態から平衡状態への緩和現象であり、実験的に得られる T_g は加熱または冷却速度 β に依存する。 T_g での構造緩和に対する活性化エネルギー ΔE_{T_g} は、次式のように、 $T_g \circ \beta$ 依存性から算出される。⁵⁾

$$\frac{\Delta E_{T_g}}{R} = \frac{\mathrm{d}\ln\beta}{\mathrm{d}(1/T_g)} \tag{1}$$

ここで、Rは気体定数であり、 ΔE_{Tg} が誘電率や粘度の温度変化から得られる見かけの活性化エネルギーと等価だと仮定すると、フラジリティmは次式で与えられる。5

$$m = \frac{\Delta E_{T_{\rm g}}}{(\ln 10)RT} \tag{2}$$

 T_{g} は β の増加と共に徐々に高温側にシフトしていく。Fig.4 に例示するように,各溶液の全濃度において $1/T_{g} \ge \ln \beta$ の 間に概ね良好な直線関係が成り立ち,²⁴⁾各直線の傾きから 式(1)を用いて $\Delta E_{T_{g}}$ が求められる。

純粋な 12PDA, 12PDO, Gly の各 ΔE_{Tg} 値はそれぞれ 340, 170, 188 kJ mol⁻¹ と決定された。²⁴⁾ 各値の比較から, 12PDA の T_g 近傍における構造緩和の活性化障壁は, 12PDO, Gly の場合の約2倍に相当する。

式(2)より, 12PDA, 12PDO, Glyの各フラジリティmは, それぞれ 123, 53, 53 と決定された。²⁴⁾ 各溶媒では分子の

Fig.4 Plots of $\ln \beta$ versus $1/T_g$ for x = 0 and 0.20 for each mixture. Straight broken lines are linear fits to the data for each mixture.

Fig.5 Concentration dependence of the kinetic fragility (m) for each mixture. Broken lines are to guide the eye.

サイズや構造が互いに類似しているが、12PDA は 12PDO, Glyに比べて2倍以上のmを示している。

多くの低分子性物質では、動的フラジリティ *m* と熱力学 的フラジリティの指標とされる $\Delta C_p/\Delta mS$ (ΔC_p を融解エント ロピー ΔmS で除した値) との間に、直線的な正の相関関係 *m* = 40 $\Delta C_p/\Delta mS$ が成り立つことが経験的に知られている⁷)。 12PDO, Gly では、類似する水素結合性液体と同様に、中程 度のフラジリティを示し、この経験則に概ね従う。12PDA では、DSC 測定で得た $\Delta C_p = 99.5$ J K⁻¹ mol⁻¹, $\Delta f_{ms}S = 54.0$ J K⁻¹ mol⁻¹ から 40 $\Delta C_p/\Delta mS = 73^{21}$) と予測される。実際にはそ の約 5/3 倍のフラジリティ (*m* = 123) を示し、上記の経験 則から大きく外れ、動的に異常に fragile である。なお、上 記の経験則から逸脱する物質として、デカリン、Se、亜リ ン酸トリフェニル (TPP)、トルエンが知られており、⁷ それらの *m* は予測値の 2~3 倍大きい。

Fig.5 に示すように、アミン溶液とアルコール溶液では m の濃度依存性が全く異なっている。(NaClO4) $x(12PDA)_{1-x}$ では、mはx < 0.20まで増加してx = 0.20付近で最大(m = 150)となるが、その後急減し、溶解度上限x = 0.40では 87まで低下する。²¹⁾ 3つのアルコール溶液の mは塩添加に伴って緩やかに増加し、高濃度域でほぼ一定となり、アルコール、アミン各溶液の mはほぼ同程度となる。

各溶液のmの濃度依存性は、先述の ΔC_p の濃度依存性と 一致していない。動的および熱力学的フラジリティの相関 を調べるには、 $m \ge \Delta C_p/\Delta_m S$ の比較が望ましい。しかし、 溶液系の融解挙動は純物質に比べて複雑であり、今回の溶 液でも $\Delta_m S$ の測定が難しく、 $\Delta C_p/\Delta_m S$ を算出できていない。 しかし、 $m \ge \Delta C_p$ の濃度依存性の不一致から、これらの溶 液における動的、熱力学的両フラジリティの関係は、単純 ではないと予想される。この複雑さは、各溶液中における 複数の分子間相互作用、すなわち溶媒分子間水素結合と、 イオン-溶媒間およびイオン間相互作用の共存、競合に起 因すると推察される。^{20,21)}

3.5 溶媒・溶質効果の比較

各溶液の T_g , ΔC_p , *m* に対する溶質, 溶媒効果を同じ濃度で系統的に比較するため, x=0からx=0.30までの各値の変化量 $\Delta_{0.30}T_g$, $\Delta_{0.30}\Delta C_p$, $\Delta_{0.30m}$ を算出した。²⁴⁾

 T_g については、(NaClO₄)_x(12PDA)_{1-x}, (NaClO₄)_x(12PDO)_{1-x}, (LiBF₄)_x(12PDO)_{1-x}, (NaClO₄)_x(Gly)_{1-x} の $\Delta_{0.30}T_g$ 値が順に +37.0, +24.8, +14.8, 19.3 K であり、全溶液で塩添加に伴 い上昇する。多くの溶液系の場合と同様に、塩添加によっ て溶液の粘度が上昇していると言えるが、その効果は、ア ミンにおいてより顕著である。 各溶液の $\Delta_{0.30}\Delta C_p$ 値は、同順に-24.3、+19.9、+26.4、+29.4 J K⁻¹mol⁻¹であり、 $\Delta_{0.30}m$ 値は、同順に-27.1、+16.3、+42.8、 +23.4 である。アミン溶液のみ $\Delta_{0.30}\Delta C_p < 0$ 、 $\Delta_{0.30}m < 0$ であ り、3 つのアルコール溶液の $\Delta_{0.30}\Delta C_p > 0$ 、 $\Delta_{0.30}m > 0$ とは真 逆の変化である。このように、アミン溶液とアルコール溶 液の間には、特に ΔC_p 、m への塩添加効果において、明瞭 な違いが現れている。同一塩濃度で比較すると、アミンで は熱力学的および動的なフラジリティが共に減少、すなわ ち塩添加によって strong 化し、アルコールではその逆に fragile 化している。

アルコール溶液での溶質効果について、NaClO4 または LiBF4 を添加した 12PDO 溶液間で比較すると、 T_g への効果 では、LiBF4 より NaClO4 が大きいが、 ΔC_p 、m に対しては NaClO4 より LiBF4 の効果が大きい。塩添加に対する溶媒の 感受性を、NaClO4 を添加した 12PDO と Gly の両溶液で比 較すると、 T_g の上昇は Gly よりも 12PDO において大きい が、 ΔC_p 、m の増加は 12PDO より Gly において大きい。 T_g と ΔC_p 、m とでは溶質、溶媒効果の大小関係が完全に一致 しないが、アルコール溶液での T_g 、 ΔC_p 、m に対する塩添 加効果は定性的には同等だと言える。

4. 水素結合構造に対する塩添加効果

12PDO, Gly および 12PDA は、分子サイズや骨格が互い に類似する低分子の水素結合性液体だが、水素結合に直接 関与する官能基とその数が異なっている。このことから、 アミン、アルコール間で確認された T_g 、 ΔC_p 、m およびそ れらに対する塩添加効果の違いは、主として、溶液中の水 素結合の強度や安定性の違いに起因すると予想される。両 溶液間のガラス転移やフラジリティの違いを水素結合の観 点から説明するため、NaClO4を添加した 12PDO、Gly およ び 12PDA 各溶液について、水素結合に直接関与する-OH お よび-NH2 基の伸縮振動ラマンスペクトルの濃度変化と温 度変化を比較し、その違いを検討する。

水やアルコールにおいて-OH 基間で水素結合が形成,強 化されると、-OH 伸縮振動の波数は、O-H 結合の力の定数 の低下に起因して低くなり、そのラマンスペクトルは低波 数側にシフトする。過塩素酸塩を添加した溶液では,電荷 密度の比較的小さい ClO4-に対して-OH 基がそれほど強く 溶媒和しないで、溶媒分子間の水素結合が ClO₄-の介入に よって解消,弱化されるため,-OH 伸縮振動スペクトルは 高波数側にシフトする。17,18) これに対して、電荷密度の大 きな Li+や Na+などのカチオンには,-OH 基の非共有電子対 が配位して比較的強く溶媒和することが知られている。20 一方で,-OH 基の伸縮振動ラマンスペクトルには,アニオ ンの効果が顕著に現れるが、カチオンの効果は比較的小さ いことが知られている。18) 今回の各溶液でも、アニオン、 カチオン双方がそれぞれ異なる効果を及ぼすことが予想さ れるが,本研究では,ClO4-の水素結合破壊効果に着目して, ラマンスペクトルの解析を試みた。

比較的低塩濃度および高塩濃度の(NaClO₄)_x(Gly)_{1-x}にお ける-OH 基の伸縮振動ラマンスペクトルと、後述する各成 分比の温度依存性を Fig.6 に示す。例示した濃度を含む各 濃度の-OH 伸縮振動バンドは、3つのピークで構成される。 温度低下に伴い、高波数側のピーク W が弱くなる一方、低 波数側の2つピーク S₁, S₂が強くなり、全体として低波数 側へシフトする。NaClO₄を添加すると、高波数成分 W が 増大する一方、低波数成分 S₁, S₂は相対的に減退し、全体 として高波数側に偏っていく。各スペクトルにおいて等散 乱点(Isosbestic Point)が確認され、例示した x=0.16, 0.33 では、各々3390、3460 cm⁻¹付近に等散乱点が現れる。^{16,24}) これらの事実は、各-OH 基を近似的に 2 つの状態に区分す

Fig.6 Raman spectra of -OH stretching bands for $(NaClO_4)_x(Gly)_{1-x}$ at x = 0.16 (a) and 0.33 (b), and fraction of the S and W species at each concentration (c, d). In (a) and (b), the solid bold, dotted and gray lines represent experimental data at 300, 220 and 100 K, respectively. The thin line represents a fitting result for 300 K. The dashed (S₁, S₂) and dotted (W) lines represent its decomposed peaks. In (c) and (d), the squares and triangles represent relative integrated intensities of S₁+S₂ and W peaks, respectively. The broken lines are given by the least-square method.

ることができ、それらの間で平衡が成り立つことを示して いる。ここでは、水や水溶液において提唱されている2状 態モデル^{17,27)}に倣って、-OH 基の水素結合状態を、溶媒分 子間で強く水素結合した状態Sと、ClO4⁻⁻の介入によって水 素結合が弱くなった状態Wに区別する簡単な2状態モデ ルで記述する。低温で強くなる低波数側成分S1,S2は状態 Sに、塩添加により強くなる高波数側成分は状態Wにそれ ぞれ帰属される。ラマン散乱強度が対応する各化学種の割 合に比例すると仮定し、成分S1+S2とWの各積分強度から、 SとWの存在比を推定した。Fig.6(c),(d)に示すように、低 塩濃度域では、SがWを圧倒し、高塩濃度域でも、Sの優 位性は変わらない。溶媒分子間の強い水素結合が比較的高 塩濃度でも保持される挙動は、12PDOや他のアルコール溶 液においても確認されている。^{16,24)}

一方,アミンでは、アルコールよりも顕著な塩添加効果 が現われる。Fig.7 は、低塩濃度(x=0.05)および高塩濃度 (x=0.30)の(NaClO4)x(12PDA)1-xにおける-NH2 基の伸縮振

動ラマンスペクトルと各成分比の温度依存性を例示する。 -NH2 基の水素結合も、上述の-OH 基の場合とほぼ同様に、 S, Wの2状態モデルで説明できる。-NH2基には、非対称 伸縮 a および対称伸縮 s の各振動モードがあるため, -NH2 伸縮振動バンドを、2 状態 S/W×2 モード a/s の計 4 ピーク S_a, S_s, W_a, W_sに分離して解析した。Fig.7(c)に示すように, 低塩濃度域では、温度低下に伴ってSの割合(低波数側の Sa+Ssの相対強度)が増加する一方,Wの割合(高波数側の Wa+Wsの相対強度)は減少し、Sが室温以下で支配的とな っている。NaClO4を添加していくと,Sの減少に対してW が増加し,SとWの優位性はx = 0.20を境に逆転し, x ≥ 0.20 では W が優位となる。^{21,24)} アミンに対する ClO₄-の構 造破壊効果は、アルコールへの効果に比べてより顕著であ る。さらに x ≥ 0.30 の濃厚な溶液では, Fig.7(d)に示すよう に、大半の溶媒分子間水素結合Sが破断され、弱い相互作 用 W が支配的となっている。

アルコール,アミン両溶液で水素結合に直接関与する置換基の構造に着目すると,-OH基には非共有電子対2対と H原子1個が存在する。非共有電子対1対が他の-OH基の H原子1個と水素結合O-H…Oを形成する場合,もう1対

Fig.7 Raman spectra of $-NH_2$ stretching bands and fraction of the S and W species for $(NaClO_4)_x(12PDA)_{1-x}$ at x = 0.05 (a, c) and 0.30 (b, d) represented as same as Fig.6. In (a) and (b), experimental data are offset vertically for clarity.

の非共有電子対は水素結合に直接関与しないまま存在する。 一方,-NH2基には,非共有電子対1対とH原子2個が存在 する。非共有電子対1対が他の-NH2基のH原子1個と水 素結合 N-H…N を形成する場合, H 原子に対して非共有電 子対が不足した状態にある。先述のように,-OH 基や-NH2 基が、Na+には配位するが ClO4-には配位しないと仮定する と、アルコール溶液では、O-H…Oの水素結合を保持しな がら、過剰な非共有電子対が Na⁺に配位することが原理的 に可能であり,水素結合とイオン-溶媒相互作用が共存で きる。一方,アミン溶液では,N-H…Nの水素結合を維持し たまま, Na⁺に配位することが原理的に不可能であり, 水素 結合かイオン-溶媒相互作用のどちらか一方が選択される ことが想定される。カチオンを含めた溶媒和挙動の解明が 必要だが、上記の-OH 基と-NH2 基の構造や性質の違いは、 アルコールとアミンの間に見られた S, Wの存在比やそれ に対する塩添加効果の違いの要因の一つとして考えられる。

また, $x \ge 0.30$ の(NaClO₄)_x(12PDA)_{1-x}では, 温度低下に伴ってS が減少する一方でW は増加に転じ, 温度変化の傾向が低塩濃度の場合とは逆になっている。したがって, アミン溶液では, 塩添加によってSとW の相対的な安定性が反転している。S, Wの2 状態間の平衡を仮定して, 対応するラマン散乱強度の積分値 I(S), I(W)から2 状態間の平衡定数 K = [W]/[S] = I(W)/I(S)を算出した。K と温度 T との関係は, 以下の van't Hoff の式

$$\ln K = -\frac{\Delta_{\rm HB}H}{RT} + \frac{\Delta_{\rm HB}S}{R} \tag{3}$$

で与えられる。ここで, *R* は気体定数, $\Delta_{HB}H$, $\Delta_{HB}S$ はそれ ぞれ S に対する W のエンタルピー差, エントロピー差で ある。各濃度の(NaClO₄)_x(12PDA)_{1-x}に対する van't Hoff プロ ットを Fig.8 に示す。各濃度において, ln *K* と 1/*T* の間には 概ね良好な直線関係が成り立っている。 $x \le 0.20$ では,各直 線の傾き ($-\Delta_{HB}H/R$)が負 ($\Delta_{HB}H > 0$) であるが, $x \ge 0.25$ では,傾きが正 ($\Delta_{HB}H < 0$) に転じている。

Fig.9は、NaClO₄を添加した 12PDO, Gly および 12PDA 各溶液における $\Delta_{HB}H$ の濃度依存性を示す。各破線は実験 から得られた低濃度域の $\Delta_{HB}H$ を, x = 0 から室温の溶解度 上限まで直線で外挿したものである。x = 0 での切片は、各 純粋溶媒中における溶媒分子間水素結合の強度に対応する。 12PDA、12PDO、Gly の $\Delta_{HB}H$ 値は、各々2.6、4.3、6.3 kJ mol⁻¹ と求められる ²⁴。その大小関係は、12PDA < 12PDO < Gly であり、アルコールの水素結合 OH…O がアミンの NH …N より強いこと、Gly、12PDO が分子内に各々3 個、2 個

Fig.8 The van't Hoff plots for $(NaClO_4)_x(12PDA)_{1-x}$. Solid and broken lines are given by the least-squares method for $x \le 0.20$ and $x \ge 0.25$, respectively.

の-OH 基を持つことから、水素結合に関与する官能基が多いGlyの方が、12PDOよりも水素結合が強いことが分かる。

比較的低塩濃度域では、アミン、アルコール各溶液共に、 $\Delta_{HB}H$ が塩添加に伴って直線的に減少する。アルコール溶液 の場合、 $\Delta_{HB}H$ は溶解度の範囲内で $\Delta_{HB}H>0$ が維持される。 アルコール溶液の水素結合ネットワークは、イオンによっ て徐々に壊されるが、個々の結合が比較的強く安定なため、 甚大な構造破壊には至らないことが推察される。

一方, 12PDA 溶液では, $x \le 0.20$ においてはアルコール と同様に, $\Delta_{HB}H > 0$ であるが, x = 0.25前後で急減して外 挿線から逸脱し, $x \ge 0.25$ では $\Delta_{HB}H < 0$ に転じる。アミン では, アルコールと比べて, 溶媒分子間水素結合が弱く不 安定なため, イオンによって水素結合ネットワークが劇的 に破壊されると考えられる。また, x = 0.20を境に優位な分 子間相互作用が S から W に逆転することから, この濃度 以上では, イオンを中心とした相互作用が溶液内で急増す ることが予測される。(NaCIO4)x(12PDA)_{1-x}におけるイオン 会状態を検証するため, 溶質側の CIO4-振動モードの中 で最も明瞭なピークを示す対称伸縮モードに着目した。

Fig.10 Raman spectra of ClO_4^- stretching bands for x = 0.05, 0.20 and 0.35 of $(NaClO_4)_x(12PDA)_{1-x}$. Squares and solid lines represent the experimental data and fitted results, respectively. Decomposed bands denoted by bold-dotted, broken, dashed and thin-dotted lines represent the peaks ascribed to the contact ion pair (CIP), the solvent-shared ion pair (SSIP), the free solvated anion (FS) and the overtone of the deformation band of ClO_4^- (2 v_2), respectively.

Fig.9 The enthalpy of hydrogen-bond switching ($\Delta_{\text{HB}}H$) as a function of *x* for 12PDA, 12PDO, and Gly solutions of NaClO₄. Broken lines are drawn as straight-line extrapolations of $\Delta_{\text{HB}}H$ within each respective solubility range.

Fig.10 は、930 cm⁻¹前後に現れる ClO₄-のラマンスペクト ルを示す。このスペクトルは、934、931、920 および 908 cm⁻¹にそれぞれピークをもつ Na⁺と ClO₄-が直接会合した 接触イオン対 Na⁺ClO₄⁻(Contact ion pairs; CIP)の対称伸縮, 溶媒を介して間接的に会合したイオン対 (solvent-shared ion pairs; SSIP)の対称伸縮,完全に遊離して溶媒和する ClO₄-(free solvated anions; FS)の対称伸縮および対称変角振動 モードの倍音(2v2)の各成分で構成される。塩濃度の上昇 に伴って、最も高波数側の CIP の成分強度が相対的に増大 し、スペクトル全体は高波数側にシフトしていく。各成分 の相対強度から見積もった CIP, SSIP, FS の存在比の濃度 依存性を Fig.11 に示す。x≥0.20 において, CIP が急激に形 成されるようになり、溶解度上限付近では約 50%の ClO4-が CIP を形成している。CIP の割合を考慮して推算された x≥0.20 での Na⁺ClO₄⁻¹ 対当たりの-NH₂ 基の平均配位数は, 約 3.4 個であり 19), 平均して 3, 4 個の-NH2 基すなわち 12PDA 約 2 分子が Na⁺ClO₄⁻に溶媒和していることが推察 される。Na⁺ClO₄⁻周りに複数の 12PDA 分子が溶媒和した分 子集合体を想定した量子化学計算からも、Na⁺ClO₄⁻¹ 対当 たり3,4個の-NH2基が配位した局所的な最安定構造が推 定され,19) ラマン分光測定の結果を支持している。一方,ア ルコール溶液では、このような顕著なイオン会合は確認さ れていない。

Fig.11 Fractions of ClO_4^- species in $(NaClO_4)_x(12PDA)_{1-x}$ as a function of *x*. The fractions of the contact ion pair (CIP), the solvent-shared ion pair (SSIP) and the free solvated anion (FS) are represented by triangles, squares, and diamonds, respectively. Broken lines are to guide the eye.

5. 溶媒和構造とフラジリティ, ガラス転移の関連性

上記のラマン分光測定から推定された各溶液の水素結合 に対する塩添加効果と, DSC で観測された *m* や Δ*C*_p の温 度変化には, 異常が現れる濃度域がほぼ一致し, 相関が見 られる。このことから, アミン, アルコール各溶液の溶媒 和構造とフラジリティやガラス転移との間は, 密接な関連 性があることが示唆される。

アルコール溶液では、塩添加に伴い溶媒分子間水素結合 は部分的に破断されていくが、水素結合が比較的強固かつ 安定なため、塩による構造破壊効果は、アミンの場合に比 べて軽微であり、高塩濃度においても大半の水素結合ネッ トワーク構造が残存していると考えられる。アルコール溶 液で観測された塩添加に伴う比較的緩やかなmおよびΔCp の増加は、それぞれ水素結合ネットワーク構造の部分的な 解消と、それに伴う液体中での分子運動の自由度の増加に 起因すると解釈できる。既報のLiCl水溶液の場合、塩添加 に伴って水の局所的な四面体構造が次第に崩れ、mが直線 的に増加することが知られている。²⁸⁾この結果は、mが塩 濃度に対して単調に増加する今回のアルコール溶液の結果 と類似しており、水とアルコールでは、水素結合に対する 塩添加効果が定性的に似ていることが予想される。

一方,アミン溶液で観測された x = 0.20 前後で最大値を 示す m の濃度変化は、アルコールのように単純に説明する ことができない。純粋な 12PDA が示す大きな m と x < 0.20 での m の急増は、アミンの溶媒分子間水素結合が弱く不安 定であり、その脆弱な水素結合ネットワーク構造が塩添加 に伴って急激に破壊される現象を反映していると考えられ る。これに対して, x > 0.20 での m の急減は, 接触イオン 対の形成が急激に進行することによって、イオンの構造破 壊効果が弱化された結果と解釈することができる。しかし, ラマン分光測定からは, x>0.20 で溶媒分子間水素結合 Sの 回復を示す結果は得られていない。また、経験的にはクー ロン力などの等方的な相互作用が支配的な系は大きなmを 示すが、今回のアミン溶液では、x>0.20の高塩濃度域でイ オン会合が顕著であるにもかかわらず, m が減少に転じて いる。一方、 ΔC_p は、m が最大となる x = 0.20 前後で急減 し、 $\Delta C_p \ge m$ の両濃度変化は一致しない。 ΔC_p の減少は、 イオン対周りに溶媒が配位した安定な会合状態の形成によ って、液体の熱力学的な安定化が進み、液体の分子運動の 自由度が減少するためと解釈することができるが、先述の mの解釈と完全に整合する説明には至らない。現時点では, 溶媒和構造とフラジリティやガラス転移との関係性を完全 に解明できていないが、性質の異なる分子間相互作用が内 在する今回の溶液では、支配的な分子間相互作用の種類や 水素結合の強弱に加えて、各相互作用がどの濃度でどのよ うに共存、競合し、どのように分子運動に影響するかを考 慮する必要があると言える。

6. おわりに

本研究では、無機塩の溶解度が高く、幅広い濃度域でガ ラスを形成するアミン、アルコール溶液を着目して、塩濃 度を変えて支配的な分子間相互作用を変化させながら、 DSCによってガラス転移を詳細に解析し、ラマン分光測定 の結果と合わせて、ガラス転移やフラジリティと溶媒和構 造との関連性を調べた。 T_g 、 ΔC_p および *m* を溶液間で系統 的に比較した結果、各溶液に共通して、 T_g は塩添加に伴い 上昇するが、 ΔC_p 、*m*は、アミンとアルコールでは全く異な る濃度依存性を示した。塩添加に伴って、アルコール溶液 では、 ΔC_p 、*m* 共に増加するが、アミン溶液では、 ΔC_p 、*m*は、 少し、*m* はある中間濃度でピークを示した。 T_g 、 ΔC_p 、*m*は、 溶質よりも溶媒に強く依存し、アミン溶液はアルコール溶 液に比べて、その脆弱な水素結合構造のため、過冷却液体 の溶媒和構造及び分子運動性に対する塩添加が顕著に現れ る。一方、溶媒分子間水素結合が比較的強固で安定なアル コールに対する塩添加効果は比較的緩やかである。アミン、 アルコール間の水素結合構造の安定性の違いや、濃度によ って変化する溶液内の支配的な相互作用の共存、競合状態 が、過冷却液体の構造や動的性質に影響し、 T_{g} 、 ΔC_{p} , mに 対する塩添加効果に反映されることが明らかとなった。

過冷却液体の微視的構造とガラス転移の熱力学的,動的 な性質との普遍的な関係を明らかにするには,多種多様な 物質および混合物を網羅する研究が必要である。今後は, 他の無機塩,溶媒を用いた溶液系,アミン-アルコール2 成分系,イオン液体などを対象とする研究を計画している。

謝 辞

本研究にあたり,鳴門教育大学の武田清教授,本田亮教 授には,著者が大学院在学中より継続して貴重な御指導, 御助言を賜りました。実験の多くは同大学の卒業生,修了 生と協働して実施しました。日本熱測定学会会員各位をは じめ関係の研究者の方々には,学会発表等の折に有益な御 意見,御提案,さらに心温まる励ましのお言葉を数多くい ただきました。これまで支えていただいた全ての皆様に心 より感謝申し上げます。

文 献

- R. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. 99(5), 4201-4209 (1993).
- 2) C. A. Angell, J. Non-Cryst. Solids 13, 131-133 (1991).
- L. M. Wang, Y. Tian, R. Liu, and R. Richert, J. Chem. Phys. 128(8), 084503 (2008).
- C. Zhang, L. Hu, Y. Yue, and J. C. Mauro, J. Chem. Phys. 133(1), 014508 (2010).
- 5) K. J. Crowley and G. Zografi, *Thermochim. Acta* **380**, 79-93 (2001).
- D. Huang and G. B. McKenna, J. Chem. Phys. 114(13), 5621-5630 (2001).
- L. M. Wang, C. A. Angell, and R. Richert, J. Chem. Phys. 125(7), 074505 (2006).
- Y. Yamamura, Y. Suzuki, M. Sumita, and K. Saito, J. Phys. Chem. B 116, 3938-3943 (2012).
- O. N. Senkov and D. B. Miracle, J. Chem. Phys. 128(12), 124508 (2008).
- 10) C. A. Simionesco, J. Fan, and C. A. Angell, J. Chem. Phys. 110(11), 5262-5272 (1999).
- 11) L. M. Wang, Y. Tian, R. Liu, and R. Richert, J. Phys. Chem. B 114(10), 3618-3622 (2010).
- 12) H. Gong, M. Sun, Z. Li, R. Liu, Y. Tian, and L. M. Wang, *Eur. Phys. J. E.* **34**, 86, (2011).
- 13) K. Takeda, K. Murata, and S. Yamashita, J. Phys. Chem. B. 103(17), 3457-3460 (1999).
- 14) Y. Terashima, K. Takeda, and M. Honda, J. Chem. Thermodyn. 43(3), 307-310 (2011).
- 15) Y. Terashima, K. Takeda, and M. Honda, J. Mol. Struct. 1001, 83-88 (2011).
- 16) K. Takeda, I. Kubochi, Y. Fukunaka, N. Kinoshita, Y. Terashima, and M. Honda, *AIP Conf. Proc.* 1518, 280-283 (2013).
- 17) G. E. Walrafen, J. Chem. Phys. 52, 4176-4198 (1970).
- 18) F. Hidaka, Y. Yoshimura, and H. Kanno, J. Sol. Chem. 32(3), 239-251 (2003).
- 19) Y. Terashima, K. Takeda, and M. Honda, *Chem. Phys.* 430, 23-28 (2014).
- 20) Y. Terashima, M. Mori, N. Sugimoto, and K. Takeda, *Chem. Phys. Lett.* **600**, 46-50 (2014).

- 21) Y. Terashima, M. Mori, and K. Takeda, J. Them. Anal. Calorim. 123(3), 1777-1785 (2016).
- 22) Y. Terashima, Chem. Phys. Lett. 651, 72-75 (2016).
- 23) Y Terashima and K. Takeda, Chem. Phys. 497, 17-23 (2017).
- 24) Y. Terashima, N. Sugimoto, M. Mori, N. Kinoshita, and K. Takeda, J. Therm. Anal. Calorim. 135(5), 2797-2805 (2019).
- 25) 寺島幸生, 武田清, 熱測定 45(3), 99-105 (2018).
- 26) 大瀧仁志, 溶液化学--溶質と溶媒の微視的相互作用-, 裳華房 (1985).
- 27) J. R. Scherer, M. K. Go, and S. Kint, J. Phys. Chem. 78(13), 1304-1313 (1974).
- 28) M. Kobayashi and H. Tanaka, J. Phys. Chem. B. 115(48), 14077-14090 (2011).

寺島 幸生

Yukio Terashima E-mail: yterashima@naruto-u.ac.jp