解 説

純水および部分的に氷結した水溶液中の氷の誘電緩和

佐々木 海渡^a, 新屋敷 直木^b

^a東海大学 マイクロ・ナノ研究開発センター ^b東海大学 理学部 物理学科

(受取日:2018年4月25日,受理日:2018年7月4日)

Dielectric Relaxation of Pure Ice and Ice in Partially Crystallized Aqueous Mixtures

Kaito Sasaki^a and Naoki Shinyashiki^b

^a Tokai University, Micro/Nano Technology Center ^b Tokai University, School of Science, Department of Physics

(Received Apr. 25, 2018; Accepted July 4, 2018)

Recent progress on the dielectric studies of pure ice and partially crystallized aqueous mixtures are reviewed. Dielectric relaxation of ice has been controlled by preparation methods. This implies that the dynamics of ice seems to be affected by the impurity content in ice crystal. In dilute gelatin-water mixtures with gelatin concentration up to 5 wt%, dielectric relaxation processes of ice have been found, and those behavior depend strongly on gelatin concentration. In partially crystallized aqueous protein mixtures, three dielectric relaxation processes have been found and these are originated from dynamics of uncrystallized water, ice, and hydrated solute molecules. Keywords: ice, water, aqueous mixture, dielectric relaxation.

1. はじめに

水は身の周りに多く存在する物質の一つであり、生体組 織を含む様々な物質の構造や機能に大きく関わっている。 水の研究が、地球表層で水が偏在していることに鑑みると、 大きな意味を持つことは想像に容易い。しかし、理論的な 側面で言えば水は複雑液体に分類されその取扱が容易でな いこと、実験的な側面からは例えば不純物が容易に混入し てしまうなど、水の物性を解き明かすことの難しさは読者 の皆様にも共通の認識であろう。このような状況において, 熱を用いた測定手法の多くが水を含んだ物質はもちろん、 純粋な水や氷の研究にもたらした恩恵は計り知れない。-方で,熱的なイベントが全て計測の対象となるので,例え ば示差走査型熱量計により氷結する高分子水溶液の加熱過 程を測定したとき、氷のメルトの直前にガラス転移が観測 される場合があるが、氷のメルトによる大きな吸熱ピーク から小さなガラス転移のステップを分離し、融解エンタル ピーやガラス転移温度を一意に求めることは簡単ではない。 また,熱的な測定手法の多くは観測時間窓が 10² 秒以上の 長時間であることから、観測されるイベントについて分子 運動の詳細を議論することは難しい。

分子運動を観測する手法は熱的な手法はもちろん,核磁 気共鳴法や,動的粘弾性測定,中性子散乱法,光散乱法な ど様々である。誘電分光法はその中でもとりわけ観測時間 窓が広く,周波数ではサブµHzからサブ THz,緩和時間で 言えばメガ秒からピコ秒のおよそ 18 桁をカバーする強力 な手法である。筆者らが所属する分子複雑系研究グループ でも,17桁の周波数域をカバーする広帯域誘電分光システ ムが日夜稼働している。周波数下限および上限付近での測 定は現在でも一級の技術と習熟を要するが,数十 mHz から 数 MHz の周波数域での測定であればさほど困難なく実施 できるようになってきた。¹⁾

氷や部分的に氷結した系の中の分子運動は複雑で理解し にくい。とくに部分的に氷結する系については水溶液が凍 結によって濃縮(ここでは凍結濃縮と呼ぶ)され,濃厚溶 液相と氷の二相に相分離する。この相分離はマクロスコピ ックに水溶液を不均一にし,種々の実験,解析を困難にす る。さらに,この後で説明する様に,氷の緩和時間を再現 させることは容易でない。これこそがこれまで長きに渡っ て部分的に氷結する水溶液系の研究が敬遠されてきた一番 の理由であると思われる。

本解説では筆者らが近年取り組んできた部分的に氷結し た水溶液中の主に氷の分子運動について,広帯域誘電分光 測定により得られた結果をまとめた。

2. 誘電分光測定

線形応答理論を用い、刺激として電場 E^* を、応答として 電気変位 D^* を選ぶ。この二つの関係を与えるのが複素誘電 率 ε^* である。つまり

 $D^* = \epsilon^* \epsilon_0 E^*$ (1) と表記される。ここで ϵ_0 は真空の誘電率である。 ϵ^* は通常 $\epsilon^* = \epsilon' - j\epsilon''$ (2) と記述される。ここで j は虚数単位である。電気電子の分 野では電流 i と混同することがないように虚数単位として j がよく使われる。実数部は分極によって蓄えられるエネル

Fig.1 Temperature dependences of relaxation times of ice-Iha, Ihb, and Ihc.¹⁶⁾ For comparison, relaxation times obtained by Johari in 1981 (black star)¹⁰⁾ and in 1978 (green square),⁸⁾ Auty (open gray star),⁵⁾ Murthy (Red pentagon),⁹⁾ Gough (purple triangle),⁶⁾ and Kawada (orange diamond)⁷⁾ are plotted together. Reprinted with permission from Ref.16. Copyright (2016) American Chemical Society.

ギーに比例する量であり,比誘電率のことである。一方, 虚数部は分極によって失われるエネルギーに対応する量で あり,誘電損失と呼ばれる。

物質に電場を印加すると分極が誘起される。このとき, 電子の重心位置や原子位置の偏りによる分極は瞬時分極と 呼ばれ、かなり短い時間域で起こる振動モードであり、ラ マン分光等,光学領域での分光測定で観測される。通常, 誘電分光測定では瞬時分極よりだいぶ長い時間域で起こる 配向分極を測定のターゲットにし、複素誘電率の実数部と 虚数部の周波数依存性を得る。周波数領域で誘電緩和は実 数部ではステップ状に, 虚数部ではピーク状に観測される。 配向分極は印加した電場による双極子モーメントの配向に よるもので,これは緩和モードである。分極の形成にかか る時間は分子運動の時間スケールを反映しているので、時 間領域での測定では分極の時定数が、周波数領域での測定 では誘電損失の周波数依存性においてピークを示す周波数 が分子運動の固有な時間もしくは速さに対応する。また, 実数部におけるステップの高さである緩和強度は、注目す る分子の数密度や双極子モーメントの大きさ、双極子の配 向相関で決まる。

3. 氷の誘電緩和時間

氷は現在,準安定なものも含めれば 18 種類の結晶構造が 実験的に発見され,²⁾ シミュレーションによる予想を含め ればさらに多くの結晶構造をとり得ることが分かっている。 ³⁾多様な結晶構造の存在は氷の大きな特徴の一つであるが, 本稿では常圧での最安定構造である六方晶,氷 Ih のみにつ いて言及する。以下,ただ氷と書くときは全て氷 Ih のこと を指す。

氷は結晶中の水分子の酸素の位置は固定されているがプ ロトンの位置が無秩序で固定されていないので印加電場に 応じてプロトンの配向による分極が起こる。氷の誘電緩和 は古くから実験,⁴⁻¹⁰⁾理論¹¹⁻¹⁴⁾の両方で研究の対象である。 しかし困ったことに,実験データですら標準的な結果とい うものが未だ存在していない。

頻繁に引用されるのは Auty らの 1952 年の文献⁵⁾か, Johari らの 1981 年の文献¹⁰⁾である。これらにそれぞれ示 された二つの実験データは、特に緩和時間について、全く 一致しない。Auty らの 1952 年の論文では活性化エネル ギー E_a がおよそ 50 kJ mol⁻¹の Arrhenius 型の緩和時間の温 度依存性を示す緩和過程が報告された。5⁵本稿ではこの温 度依存性を Auty 型と呼ぶ。一方で、Johari らの 1981 年の 論文では、242 K 以上の温度域(高温域)では Auty の結果 とよく一致するが、それより低温(中温域)ではE_aが突如 として小さくなり(およそ 20 kJ mol⁻¹), さらに低温(低温 域)の150K付近から温度の低下とともにEaが徐々に大き くなる様子が報告された。¹⁰⁾本稿ではこの温度依存性を Johari 型と呼ぶ。Fig.1 にいくつかの文献 5-10) で示された氷 の誘電緩和時間のアレニウスプロットを示す。Fig.1から明 らかなように、多くの研究で示された氷の緩和時間は Johari 型の温度依存性を示すが、中温、低温域においてな かなか一致しない。この再現性の悪さは、おそらく水が気 体を含めた様々な物質を溶かしやすいことが原因であると 思われる。当然のことであるが、イオンをドープした氷の 緩和時間は純粋な氷の緩和時間とは大きく異なる。15)純粋 な氷の緩和時間について既に確かめられていた事項は、異 方性がなく⁷⁾,単結晶,多結晶の区別もない¹⁶⁾ということ のみであった。

Fig.2 Frequency dependences of the imaginary parts of dielectric permittivity for ice-Iha (a), Ihb (b), and Ihc (c) at various temperatures. The data are shown at temperatures from 143 to 263 K (ice-Iha and ice-Ihb) and 183 to 263 K (ice-Ihc) in steps of 20 K. The arrows indicate the peak of the relaxation process of ices. Reprinted with permission from Ref.16. Copyright (2016) American Chemical Society.

我々は、この再現性の悪さを解決するために様々な方法 で氷を調製し、緩和時間の多様性の原因を探った。¹⁶)試料 として用いた水は蒸留後、イオン交換樹脂や活性炭フィル ターにより処理した後、1 kPa 以下に減圧し気泡が生成され なくなるまで1 h 以上脱気した比抵抗 18.2 MQ・cmの純水 である。まず、Johariの結果を再現させるために電極に水 を詰め、電極ごと5 K min⁻¹の速さで 298 K から 113 K まで 冷却し結晶化させた。結晶化に伴う発熱からラフに計算す ると、5 分以内でおよそ 2 ml の水が結晶化した。この氷を Ice Ih_aと呼ぶ。次に、265.15 K (-8 ℃)の環境試験器中で ビーカーに入れた水をマグネティックスターラーで撹拌さ せながらゆっくりと結晶化させた。この氷を Ice Ihc と呼ぶ。 目視によるラフな計算ではおよそ 100 ml h⁻¹で水を結晶化 させた。得られたブロック状の氷を 265.15 K の環境試験機 内で厚さ5 mm ほどの板状に加工し、電極極板で挟み、氷 が挿入された電極を形成した。念のため、265.15K(-8℃) の環境試験器中で撹拌なしに静置し得られた氷を Ice Ihbと 呼ぶ。針状に結晶化した部分が含まれたため、結晶化にか かった時間を議論することは難しかった。3つの氷 (Ice Iha, Ih_b, Ih_c)の複素誘電率の周波数依存性を測定した。Fig.2 に得られた氷の誘電緩和スペクトルの虚数部を示す。Fig.2 から、明らかに Ice Ihc のスペクトルが他(Ice Iha, Ihb)と 異なることがわかる。どの氷も 263 K では数 kHz にピーク を確認できる。このピークは温度の低下に伴って低周波側 ヘシフトした。これは分子運動が温度の低下に伴って遅く なることを意味する。Ice Ih。で観測されたピークは他の氷 に比べ足早に観測周波数域を通り過ぎるため、スペクトル の見た目が大きく異なる。ちなみに、今注目しているピー クより低周波側で観測されるピークは、電極分極や界面分 極と呼ばれる電極-試料間の界面やサンプル内の不均一構 造による界面への微量な不純物のイオンのスタックによる ものであり、氷の分子運動を直接反映したものではない。

これらの氷の緩和時間の温度依存性を議論するために, 誘電緩和のピーク周波数から緩和時間を計算した。得られ た緩和時間は Fig.1 に Ice \oplus : Ih_a, \bigcirc : Ih_b, \oplus : Ih_cのシン ボルで示した。Fig.1 から明らかなように, Ice Ih_a と Ih_bは Johari 型, Ice Ih_cは Auty 型の緩和時間の温度依存性をよく 再現した。

氷の誘電緩和メカニズムとして二種類の格子欠陥とそれ らの競合による説明が広く受入れられている。二種類の内 のひとつは L-, D-defect や Bjerrum defect¹²⁾と呼ばれる。こ れは、結晶中のある二つの水分子に注目したとき、酸素-酸素間に二個の水素が位置すること (D-defect) や水素が存 在しないこと(L-defect)による格子欠陥であり、格子欠陥 の拡散にともなう氷の水素結合ネットワークの組み換えが 誘電緩和として観測されるという考えである。もう一つは 不純物としてのイオンの混入による格子欠陥である。Johari による説明¹⁰⁾では, 高温領域では L-, D-defect が支配的で, 中間の温度領域ではイオンの混入による格子欠陥が支配的 となり、低温領域では L-, D-defect が支配的であると考え られている。他方、マイナーな考え方としてイオンの混入 による格子欠陥ではなく、プロトントンネリングによる OH と OH₃⁺の生成消滅による説明が試みられており、^{13,14)} 氷の誘電緩和のモデルについては現在でもしばしば議論さ れている。

3 種の氷が調製された状況から、それぞれの氷の緩和時間の差は結晶構造中に取り残された不純物であるイオンの量に起因すると我々は考えた。つまり、Ice Ih_bや Ice Ih_cでは急速な結晶化により結晶構造中にもとの純水に不純物として極微量に含まれていたイオンが取り込まれ、そのイオンを原因とした格子欠陥が Johari 型の温度依存性をもたらしたと考えた。一方で、Ice Ih_aではゆっくりとした結晶化によりイオンの混入による格子欠陥がなくなったと考え、これにより Johari 型の温度依存性で見られる中間の温度域がなくなり、Auty 型の温度依存性を示したのであると結論した。

4. 水溶液の誘電緩和

水を含んだ物質の誘電分光測定の多くは氷が存在しない 条件で行われてきた。¹⁷⁾これは部分的に氷結した水溶液の 測定および解析の複雑さによるものと思われる。前章で述 べたように、純粋な氷の誘電緩和ですらその調製方法に大 きく依存することから、水溶液の場合ではさらに複雑にな る。よって、まず、より単純な氷結しない水溶液中で観測 される分子運動の特徴について述べたあとに、部分的に氷 結した水溶液について述べる。ただし、本稿は氷や氷結し た水溶液を中心とした解説であるため、氷結しない水溶液 についての詳細は他¹⁷⁾ に譲り必要最低限の解説に留める。

Fig.3 The imaginary parts of dielectric functions for 2 wt% gelatin–water mixture at different temperatures. The red, orange, green, light blue, and gray solid lines represent the process A, B, C, D, and dc conductivity, respectively. The black solid curves are the sum of all the processes. Reprinted with permission from Ref. 21. Copyright (2017) American Chemical Society.

4.1 氷結しない水溶液

氷結しない水溶液では溶質もしくは水和した溶質の協同 運動による α 緩和と液体状態の水の局所的な分子運動を反 映した ν 緩和の二つが誘電緩和として観測される。¹⁷⁾ ここ で言う α 緩和はガラス形成物質において普遍的に観測され るガラス転移の原因となる構造緩和と同義である。溶質に よって α , ν 緩和の現れ方は異なっており,通常のガラス 形成物質で観測される α β の分離のように水溶液において $\alpha \nu$ の分離が起こる場合もあれば,高分子水溶液¹⁸⁾では室 温で明確な α 緩和と ν 緩和がそれぞれ観測される場合もあ る。さらに、この ν 緩和の特徴は Ngai らが普遍的に存在す

Fig.4 The reciprocal temperature dependence of the dielectric relaxation times of 2 wt% gelatin–water mixtures for processes A (red square), B (orange circle), C (light green diamond), and D (light blue triangle). The plots with black circles denote the dominant process of ice. The open plots indicate that their loss peaks are not definitely observed. The black stars denote the relaxation time of pure ice that was obtained by us. Reprinted with permission from Ref. 20. Copyright (2017) American Chemical Society.

ると主張し、様々な物質で観測されている Johari-Goldstein (JG) β 緩和の特徴を備えている。¹⁹⁾ 二成分系であれば溶 質,溶媒それぞれの分子運動の運動性が異なる場合,それ ぞれのα緩和が観測されるが²⁰⁾,氷結しない水溶液は二成 分系であるにも関わらず,まるで一成分系の様に一組のα, ν 緩和が観測され, ν 緩和が JG β緩和と同一の特徴を示す。

4.2 部分的に氷結した水溶液

部分的に氷結した水溶液の場合,上記のα,ν緩和に加 え最低もう一つ,氷の分子運動に起因する緩和が観測され る。部分的に氷結した水溶液で観測される氷の誘電緩和の 特徴を明確にするために,溶質濃度の低い(1~5 wt%)ゼ ラチン水溶液の誘電緩和²¹⁾について紹介する。本稿での濃 度もしくはwt%は全て溶質の濃度を意味する。この濃度域 では水溶液中の水はほとんど結晶化するため,低温でも結 晶化しない水の誘電緩和は小さすぎて観測されていない。 また,溶質濃度が低いのでゼラチン分子の分子運動による 誘電緩和も観測されず,緩和スペクトルに現れる全ての誘 電緩和は氷の分子運動によるものと考えられる。

Fig.3 にいくつかの温度での 2 wt%ゼラチン水溶液の複 素誘電率の虚数部の周波数依存性を示す。263 K で数 kHz 付近に存在する明確なピークが氷の誘電緩和である。ここ ではこの緩和を B 緩和と呼ぶ。この誘電緩和は温度の低下 に伴って複数の誘電緩和, A, B, C, D 緩和に分離した。 濃度 2 wt%の水溶液では B 緩和が高温から続く緩和過程で あり,これをこの濃度の水溶液における「主な氷の緩和」 とした。主な氷の緩和は濃度によって変化し,より低濃度 では A 緩和に,高濃度になるにつれ D 緩和に変化した。10 wt%以上の水溶液では緩和の分離は起こらず,主な氷の緩 和は Auty 型の温度依存性を示した。また,合成高分子水溶 液ではこのような氷の誘電緩和の多様化はかなり高い溶質 濃度でないと起こらないことを確かめた。²²⁾

多様化した氷の誘電緩和を特徴付けるため、複素誘電率の周波数依存性に対し、緩和関数の重ね合わせによるカー ブフィットを行った。観測された氷の誘電緩和時間のアレ ニウスプロットを Fig.4 に示す。参考のため、ゼラチン水

Fig.5 The reciprocal temperature dependence of the dielectric relaxation times of 20 wt% BSA–water mixture. The black stars denote the relaxation time of pure ice that was obtained by Johari. Reprinted with permission from Ref.25. Copyright (2017) American Chemical Society.

溶液と同じ条件で測定した純粋な氷の緩和時間を*で示す。 この純粋な氷の緩和時間は Johari 型の温度依存性を示した。 Fig.4 から, 温度の低下によって B 緩和から A, D, C 緩和 の順番で緩和の分離が起こっていることが分かった。この 誘電緩和の分離は氷の分子運動の多様化を意味している。 また、部分的に氷結した水溶液中の氷の誘電緩和が取り得 る Eaの値が大きく分けて二つ存在することが分かる。一つ は Auty 型, もしくは Johari による研究 ^{5,10)} の高温域と低温 域で得られた 50 kJ mol⁻¹,もう一つは Johari らによる研究 ¹⁰⁾において中間の温度域で観測された 20 kJ mol⁻¹である。 この多様化が意味するところは、先に示した純粋な氷で得 られた結果に鑑みれば、水溶液中での溶質からの距離によ って氷の成長の速さが異なり、水溶液中でゆっくりと成長 した氷ほど中間の温度域が狭くなり Auty 型(D緩和側)に 近い温度依存性を、急速に結晶化した氷は Johari 型(A 緩 和側)に近い温度依存性を示したのだと考えた。

低濃度水溶液において、氷の誘電緩和の特徴がおおよそ 明らかになったので、v緩和やα緩和と氷の緩和が同時に 観測される水溶液について議論を進めたい。このような系 について最初に報告したのは Feldman のグループによる glycerol 水溶液を用いた報告であると思われる。²³⁾この報 告によれば部分的に氷結した glycerol 水溶液には 3 つ、凍 結濃縮により仕込み濃度よりも高濃度になったグリセロー ル水溶液(α緩和)、氷と濃厚溶液の界面に存在する水、氷 の誘電緩和がそれぞれ存在する。グリセロール水溶液のα vの分離はかなり低温で起こる²⁴⁾が、Feldman らの報告²³⁾ ではその温度に達していないのでv緩和は観測されていな い。

Feldman のグループによる glycerol 水溶液の報告²³⁾の次 に部分的に氷結した水溶液について報告したのは,我々が 行った部分的に氷結したウシ血清アルブミン(BSA)水溶 液の研究²⁵⁾であると思われる。これは Kawai らの断熱熱量 計を用いた研究²⁶⁾に刺激されて開始した研究である。 Kawai らの研究では,部分的に氷結した BSA 水溶液には 3 つ,高温から順に a) 170 K以上で BSA のディスオーダー な部分, b) 135 K に BSA の開口部に捉えられた水, c) 110 KにBSAに水和した水の分子運動に起因するガラス転移が それぞれ観測された。²⁶⁾一方,我々が行った BSA 水溶液の 誘電分光測定でも大きく分けて 3 つの分子運動が観測され, 緩和時間が 100 秒となる温度で定義したそれぞれのガラス 転移温度が,Kawai らが観測した 3 つのガラス転移の温度 域と概ね一致した。Fig.5 に観測された3つの分子運動のア レニウスプロットを示す。我々はそれぞれの分子運動につ いて、a) 水和 BSA の a 緩和、b) 氷の緩和、c) 水の v 緩 和であると解釈した。²⁵⁾ ここで、b) の 135 K でガラス転 移する分子運動の解釈について、Kawai らの「BSA の開口 部に捉えられた水」と我々の解釈が異なった。我々はこの 誘電緩和が融点以上で確認されないことや、緩和時間の温 度依存性やその絶対値が Johari 型の氷のそれと近いこと、 そして緩和強度がバルクの氷の緩和強度に近いことから、 135 K 付近で見られるガラス転移は氷の分子運動の凍結に よるものであると解釈した。

BSA 水溶液の研究の後,我々はゼラチン水溶液に焦点を 当てて研究を行った。様々な濃度(1~45 wt%)のゼラチン 水溶液の研究から,ゼラチン水溶液においても a)水和ゼ ラチンの α緩和,b) 氷の緩和,c)水の v緩和として3つ の分子運動が存在することが分かった。^{21,27,28)}氷の分子運 動については誘電緩和の緩和強度が溶質濃度の増加に伴っ て減少し,氷結しなくなる高い濃度(65 wt%付近)でゼロ になった。²⁸⁾また,先に述べたように,濃度の増加に伴っ て緩和時間の温度依存性が変化し,10 wt%以上の濃度では Auty らが報告した緩和時間の温度依存性と同じ温度依存 性を示した。²¹⁾

5. おわりに

本稿では氷の誘電緩和を中心として我々がこの 10 年ほ どで取り組んできた純水や部分的に氷結した水溶液を用い た研究について解説した。BSA 水溶液, ゼラチン水溶液で 得られた結果をまとめると、部分的に氷結する水溶液、つ まり,氷と濃厚溶液の2相に分離する系において,氷の誘 電緩和は結晶成長の過程を大きく反映した緩和時間の温度 依存性を示すことが明らかになってきた。全てを紹介する ことはできなかったが、本文で挙げた我々の研究以外にも Nakanishi らによる球状タンパク質 (リゾチームやミオグロ ビン)を用いた水溶液²⁹⁾や Cerveny らによる合成高分子 水溶液の等温結晶化,³⁰⁾ ごく最近ではコラーゲン-,³¹⁾マ ルトトリオース-水系³²⁾ が誘電分光法によって調べられて いる。今後、試料のキャラクタライズという面では温度履 歴の精密なコントロールや結晶構造解析、分子運動の理解 という面からは誘電分光法はもちろん、熱分析や核磁気共 鳴法、中性子散乱法等による相補的な研究により、例えば 氷と濃厚溶液の界面の水の分子運動や、氷の分子運動の多 様性と格子欠陥の関係など、部分的に氷結した水溶液中の 多彩な分子運動にまつわる詳細な議論が可能となるだろう。

謝 辞

本稿に挙げた研究の一部は科学研究費補助金 (16K05522),私立大学戦略的研究基盤形成支援事業によ り実施された。また、本解説で紹介した研究成果は東海大 学分子複雑系研究グループの喜多理王教授、八木原晋教授 を始めとし、多くの方に支えられ明らかになったものであ る。この場を借りて深謝する。また、執筆の機会を与えて いただいた先生方に深く感謝申し上げる。

文 献

- 1) F. Kremer and A. Schönhals, "Broadband Dielectric Spectroscopy", Springer (2003).
- 2) L. del Rosso, M. Celli, and L. Ulivi, *Nat. Commun.* 7, 13394 (2016).
- 3) T. Matsui, M. Hirata, T. Yagasaki, M. Matsumoto, and H. Tanaka, J. Chem. Phys. 147, 091101 (2017).

- 4) O. Wörz and R. H. Cole, J. Chem. Phys. 51, 1546–1551 (1969).
- 5) R. P. Auty and R. H. Cole, J. Chem. Phys. 20, 1309–1314 (1952).
- S. R. Gough and D. W. Davidson, J. Chem. Phys. 52, 5442– 5449 (1970).
- 7) S. Kawada, J. Phys. Soc. Jpn. 44, 1881-1886 (1978).
- 8) G. P. Johari, and S. J. Jones, *J. Glaciol.* **21**, 259–276 (1978).
- 9) S. S. N. Murthy, Phase Transitions 75, 487-506 (2002).
- 10) G. P. Johari and E. Whalley, J. Chem. Phys. 75, 1333–1340 (1981).
- 11) G. P. Johari and E. Whalley, J. Chem. Phys. 115, 3274–3280 (2001).
- 12) N. Bjerrum, Science 115, 385-390 (1952).
- 13) I. Popov, A. Puzenko, A. Khamzin, and Y. Feldman, *Phys. Chem. Chem. Phys.* **17**, 1489–1497 (2015).
- 14) J. H. Bilgram and H. Granicher, *Eur. Phys. J. B* 18, 275–291 (1974).
- 15) S. Kawada, J. Phys. Soc. Jpn. 57, 3694-3697 (1988).
- 16) K. Sasaki, R. Kita, N. Shinyashiki, and S. Yagihara, J. Phys. Chem. B 120, 3950–3953 (2016).
- 17) N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, and P. Pissis, *J. Phys.: Condens. Matter* 19, 205113 (2007).
- 18) K. Sasaki, Y. Matsui, M. Miyara, R. Kita, N. Shinyashiki, and S. Yagihara, J. Phys. Chem. B 120, 6882-6889 (2016).
- 19) S. Capaccioli, K. L. Ngai, and N. Shinyashiki, J. Phys. Chem. B 111, 8197-8209 (2007).
- 20) A. Spanoudaki, N. Shinyashiki, A. Kyritsis, and P. Pissis, AIP Conf. Proc. 982, 125-130 (2008).
- 21) T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki, and S. Yagihara, J. Phys. Chem. B 121, 2896-2901 (2017).
- 22) to be submitted
- 23) Y. Hayashi, A. Puzenko, and Y. Feldman, J. Non-Cryst. Solids 352, 4696–4703 (2006).
- 24) S. Sudo, M. Shimomura, N. Shinyashiki, and S. Yagihara, J. non-Cryst. Solids 307, 356–363 (2002).
- 25) N. Shinyashiki, W. Yamamoto, A. Yokoyama, T. Yoshinari, S. Yagihara, R. Kita, K. L. Ngai, and S. Capaccioli, *J. Phys. Chem. B* **113**, 14448–14456 (2009).
- 26) K. Kawai, T. Suzuki, and M. Oguni, *Biophys. J.* 90, 3732 (2006).
- 27) K. Sasaki, R. Kita, N. Shinyashiki, and S. Yagihara, J. Chem. Phys. 140, 124506 (2014)
- 28) K. Sasaki, A. Panagopoulou, R. Kita, N. Shinyashiki, S. Yagihara, A. Kyritsis, and P. Pissis, *J. Phys. Chem. B* 121, 265–272 (2017).
- 29) M. Nakanishi and A. P. Sokolov, J. Non-Cryst. Solids 407, 478-485 (2015).
- 30) S. Cerveny, S. Ouchiar, G. A. Schwartz, A. Alegria, and J. Colmenero, J. Non-Cryst. Solids 356, 3037-3041 (2010).
- 31) Y. K. Segev, I. Popov, I. Solomonov, I. Sagit, and Y. Feldman, J. Phys. Chem. B 121, 5340-5346 (2017).
- 32) K. Yoshiba and K. Soga, J. Biorheol. 31, 16-21 (2017).

佐々木 海渡 Kaito Sasaki E-mail: kaito@tokai.ac.jp

新屋敷 直木 Naoki Shinyashiki E-mail: naoki-ko@keyaki.cc.u-tokai.ac.jp