解 説

数値計算によるディラック電子系の 巨大ローレンツ数の解明

吉野 治一

大阪市立大学 大学院理学研究科

(受取日:2017年4月25日,受理日:2017年6月6日)

Investigation of Giant Lorenz Ratio of Dirac-Fermion Systems by Numerical Calculations

Harukazu Yoshino

Graduate School of Science, Osaka City University

(Received Apr. 25, 2017; Accepted Jun. 6, 2017)

The Lorenz ratios $(L = \kappa/(\sigma T))$ of the Dirac-fermion systems were numerically calculated using the Boltzmann transport theory, where κ , σ and T are the thermal conductivity, electrical conductivity and absolute temperature, respectively. The bipolar-diffusion effect, which enhances the electronic thermal conductivity κ_e in intrinsic semiconductors, was introduced to account for the reported giant L of a Dirac-fermion system, graphene at its neutrality condition. It was found that the calculations qualitatively reproduce the experimentally observed gate-voltage dependence of σ , S and κ_e by considering the energy dependence of the relaxation time; and the electron- and hole-puddles. The calculated value of L amounts to $(2-4)L_0$, where $L_0 = 2.45 \times 10^{-8} \text{ W} \cdot \Omega \cdot \text{K}^{-2}$ is Sommerfeld value of Wiedemann–Franz law, while the reported L of graphene reaches about $20L_0$ at most. The rather large L (=3.7 L_0) was also observed for another Dirac-fermion system, α -(BEDT-TTF)₂I₃ (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) by measuring simultaneously the change in the σ and κ associated with its charge-ordering transition at about 135 K for a single crystal. Another explanation of the giant L on the basis of quantum hydrodynamics is also introduced briefly, while both the bipolar-diffusion and quantum-hydrodynamic mechanisms are not exclusive to each other.

Keywords: Wiedemann-Franz law, Lorenz ratio, Dirac fermion, graphene, organic conductor, α-(BEDT-TTF)₂I₃

吉野 治一 Harukazu Yoshino E-mail: yoshino@sci.osaka-cu.ac.jp

1. ウィーデマン-フランツの法則とローレンツ数

自然科学の「法則」には、質量-エネルギーの保存則や、 熱力学の第二法則のように普遍的なものがある一方で、オ ームの法則やフックの法則のように、限定的な条件で近似 的に成り立つものもある。本稿では、固体物理学でよく知 られたウィーデマン-フランツの法則 —後者に属する—が、 グラフェンなどで実現しているディラック電子系という舞 台で破れる機構について考察したい。

固体の輸送現象の代表といえば電気伝導と熱伝導である。 電気伝導率 σ は物質中の電荷の流れやすさの目安であり, 電場Eと電流密度jの比例係数として次のように定義される。 $j = \sigma E$ (1) これは上述のオームの法則である。熱の流れについてこれ に対応するのがフーリエの法則であり,次式で定義される。 $\dot{q} = -\kappa \nabla T$ (2)

∇Tは固体に存在する温度勾配, qは単位時間に温度勾配に 垂直な単位断面積を流れる熱流,そして両者の比例係数で あるκが熱伝導率である。右辺の負号は,熱が高温から低 温に流れることに対応している。

金属や半導体中で電荷を運ぶのは自由電子や正孔である。 これらは熱流の担い手でもあるが、熱はフォノン(量子化された格子振動)によっても運ばれるため、電気伝導体の κ は、 $\kappa = \kappa_e + \kappa_{ph}$ (3)

のように、電子系と格子系の和として表せる。ただし、ア ルカリ金属や貴金属など電気伝導率が比較的高い物質では、 熱は主に電子によって運ばれる。このとき σ と κ_e は、ある温 度Tで次の関係を満たすことが実験的に見いだされている。

$\frac{\kappa_{\rm e} + \kappa_{\rm ph}}{\sigma T} \sim \frac{\kappa_{\rm e}}{\sigma T} = L \tag{4}$

これがウィーデマン-フランツの法則である。すなわち,格 子系の熱伝導率が無視できる場合は,結晶の熱伝導率と電 気伝導率は比例関係にある(Fig.1)。この比例係数 L をロ ーレンツ数という。Fig.1 の場合は,タングステン(W)を除 いた点に当てはめた直線の傾きから,T = 293 K として,L= 2.4×10^8 W· Ω ·K⁻²が得られる。これは,後述する半古典 論的な計算を自由電子模型に適用して得られる $L_0 =$ ($\pi^2/3$)(k_B/e)²= 2.45×10^8 W· Ω ·K⁻²という値に極めて近い。 L_0 をゾンマーフェルト数と呼ぶこともある。典型金属に限 らず多くの電気伝導体では,電子による電荷輸送および熱 輸送における散乱機構が共通の場合, $L = L_0$ がよく成り立 つ。これには室温付近のフォノン散乱の通常過程や,ヘリ ウム温度付近の不純物散乱などが当てはまる。しかし,100 K 程度では Lが L_0 よりも小さくなることが知られている。¹)

Fig.1 Thermal and electrical conductivities of elemental metals at room temperature showing Wiedemann–Franz law.

2. グラフェンの巨大ローレンツ数

逆にLが L_0 より大きくなる例として,近年報告されたグラフェンの低温実験の結果がある(Fig.2)。^{2,3)}

グラフェンはグラファイトの層状結晶から一層のみを取 り出した二次元物質である。その単離とディラック電子系 という電子状態に関する研究によって Geim と Novoselov が2010年にノーベル物理学賞を受賞したことで広く知られ るようになった。^{4.5)} グラフェンは電気伝導および熱伝導 の両方で特異な性質を発揮する。

グラフェンの六角形格子には独立な炭素原子サイトが 2 個あり、これから価電子帯と伝導帯が生じる。炭素原子は4 価なので最外殻の原子軌道は半分だけ満たされている。こ れを反映して0Kでは価電子帯は電子で満たされており、 伝導帯は空となる。グラファイトでは価電子帯と伝導帯の 一部が重なり合って半金属となるが、グラフェンでは価電 子帯と伝導帯が点で接するゼロギャップ半導体となる。

通常物質の自由電子のエネルギーεは,バンドの端では 波数ベクトル k に対して二次関数的に変化する。

$$\varepsilon(\mathbf{k}) = \frac{\hbar^2 \mathbf{k}^2}{2m^*} \tag{5}$$

ここで m* は電子の有効質量を表す。

一方, グラフェンの場合, ゼロギャップの接点近傍では,

$$\varepsilon(\mathbf{k}) = \pm \hbar v_{\rm F} |\mathbf{k}| = \pm \hbar v_{\rm F} \sqrt{k_x^2 + k_y^2} \tag{6}$$

と、エネルギーは k の一次関数となる。ただし v_F はキャリ アのフェルミ速度である。これを図示すると、Fig.3(a)のよ うに 2 つの円錐が対向した形になる。これをディラック・ コーン、このようなバンドで特徴付けられる電子系をディ ラック電子系という。

ディラック電子系は、こちらも 2016 年のノーベル物理学 賞の対象となったトポロジカル絶縁体—ある種の対称性を 持った絶縁体—の結晶表面や、後述する分子性導体 α-(BEDT-TTF)₂I₃のバルクでも実現されており、今世紀にな って研究が進展した新電子相である。

固体中の自由電子の閉じた軌道運動の量子化をランダウ 量子化という。従来物質では量子化準位の間隔が量子数Nに 依存しないのに対し、ディラック電子系では√Nに比例する。 これは、磁気量子振動効果や量子ホール効果の特異な挙動 となって現れる。^{4.5)}

Fig.2 Carrier density (*n*) dependence of Lorenz ratio (*L*) of graphene (a) below 1 K² and (b) at 60 K,³ respectively. The vertical scale is normalized by Sommerfeld value (L_0). The results for three samples with different quality are shown in (b).

Fig.3 Schematic dispersion relations of (a) intrinsic Dirac cones and those giving (b) electron and (c) hole puddles when $\mu = 0$.

ー方,強固な sp^2 結合に基づくグラフェンの格子は熱伝 導に優れており、⁶⁻⁹⁾ 例えば Balandin らは室温で約 5300 W·K⁻¹·m⁻¹という驚異的な値を報告している。⁶⁾ これは従来 型物質では最高の κ を持つダイヤモンド¹⁰⁾ の3–5倍に相当 する。

この大きな格子熱伝導率に隠れてしまい, グラフェンの ディラック電子系の熱伝導率を高温で観測することは大変 難しい。しかし低温では,フォノンが減少する一方で,電 子の移動度が上昇するため, κ_e の温度依存性や外部電場(ゲ ート電圧, V_g)依存性が測定可能となる。^{2,3)}そして, $V_g = 0$ すなわちキャリア・ドープのない中性条件では, L/L_0 が20 にも達するというのである。³⁾

これから述べるように、巨大なLはバイポーラー・ディ フージョン(双極性拡散,以下 BD と略記)効果という機 構によってある程度説明可能である。BD 効果は真性半導 体で古くから知られている現象である。真性半導体では, 熱励起によって電子と正孔が生成する。半導体試料に温度 勾配があると、電子と正孔は共に高温から低温に拡散して 熱を輸送する。これは通常の電子熱伝導率として寄与する。 しかし、低温側では一定の割合で電子と正孔が再結合する ので、このとき高温側で吸収した励起熱エネルギーを再放 出する。これが余剰の熱伝導率として観測される。¹¹⁻¹⁴⁾つ まり、電子系由来の熱伝導率が高くなるのでLも大きくな る。この BD 効果は高温ほど顕著だが、原理的には低温で も起こりうる。また、半導体に不純物を添加して、p型や n 型のように一方のキャリアの密度を増やすと抑えられる。

ディラック電子系は電荷中性の条件ではコーンの接点— ディラック点ともいう—にフェルミ準位がある。したがっ て、有限温度では熱励起された電子と正孔が共に伝導に寄 与するので、BD 効果が期待できる。そこで、我々は BD 効 果を考慮することで、ディラック電子系のL がどの程度増 大するかを数値計算によって調べた。¹⁵⁾ その結果、散乱機 構にもよるが、電荷中性条件で L/L₀ が 2-4 の程度には増大 することが明らかとなった。

次章では数値計算の手法についてやや詳しく述べ,以降 の章で我々の数値計算の結果と,グラフェンについて報告 された輸送係数の実験結果について紹介する。最後に,BD 効果がグラフェンのみでなく,ディラック電子系全般で起 こりうることを示す実験結果として,我々が測定した α -(BEDT-TTF)₂I₃の σ と κ について述べる。

3. 緩和時間近似による輸送係数の数値計算

輸送係数の計算には、ボルツマン方程式の緩和時間近似 による解を用いた。¹⁶⁾ ボルツマン方程式は次式で表される。

式(7)は、電子の分布関数 f_k の時間変化の要因として、電子 散乱によって f_k が熱平衡の分布 f_0 に戻ろうとする効果、電 場などの外力による f_k の変化、 f_k の空間分布による拡散の 効果を考え、定常状態ではこれらの和がゼロになることを 意味している。

緩和時間近似とは、散乱機構の詳細を量子力学的に計算 するのではなく、緩和時間 τ でもって f_k が指数関数的に f_0 に 緩和するという近似である。 f_0 はフェルミ分布関数で、量 子論を一部取り入れているため、この種の計算を半古典的 な計算という。この近似で得られる解は次式で与えられる。

$$\sigma = q^2 K_0 \tag{8}$$

$$\boldsymbol{S} = \frac{1}{qT} \frac{\boldsymbol{K}_1}{\boldsymbol{K}_0} \tag{9}$$

$$\kappa_{\rm e} = \frac{K_2 - K_1 K_0^{-1} K_1}{T} \tag{10}$$

$$\boldsymbol{K}_{n} = \frac{1}{2\pi^{2}} \int \tau(\varepsilon, T)(\varepsilon - \mu)^{n} \boldsymbol{v} \boldsymbol{v}(-f_{0}') d\boldsymbol{k}$$
(11)

ここで、 σ , S, κ_e はそれぞれ電気伝導率,熱電能,電子熱 伝導率のテンソルだが、グラフェンは等方的なのでスカラ ーとなる。q は電荷素量,Tは絶対温度である。キャリア の緩和時間 τ は、一般にはエネルギー ε と温度Tの関数であ る。 μ はフェルミ準位(化学ポテンシャル)、vはキャリア の群速度ベクトル、 f'_0 はフェルミ分布関数の導関数である。 これらの積を第一ブリルアン域内で積分する。vも

$$\boldsymbol{v} = \frac{1}{\hbar} \frac{\partial \varepsilon}{\partial \boldsymbol{k}} = \frac{1}{\hbar} \left(\frac{\partial \varepsilon}{\partial k_{x}}, \frac{\partial \varepsilon}{\partial k_{y}}, \frac{\partial \varepsilon}{\partial k_{z}} \right)$$
(12)

のようにエネルギーの導関数なので、 $\tau(\epsilon,T)$ とバンド構造 によるエネルギーの波数依存性 $\epsilon(k)$ がわかれば、これらの 輸送係数が計算できる。

前述のゾンマーフェルト数 L_0 は,通常の自由電子バンド (式(5))と、十分なキャリア密度 ($\mu \gg k_B T$)、そして一定 の τ を仮定することで解析的に得られる。

最初の計算では、二次元ディラック電子系のバンド(式 (6)、**Fig.3(a**))を仮定した。ディラック電子系の特徴は、フ ェルミ速度 $v_{\rm F}$ の絶対値が k に依存せず、その値がコーンの 傾きを決めていることである。二次元系なので、式(11)の 積分も二次元の第一ブリルアン域について行う。この結果、 $\sigma \geq \kappa \sigma$ SI 単位はそれぞれ [S] = [Ω^{-1}]、[W·K⁻¹]となる。一

 $\sigma \geq k$ の SI 単位はそれ (S) = [Ω], [W·K] となる。 方 S は三次元系と同じ [V·K⁻¹] である。

ディラック電子系に限らず,2 種類のキャリアが伝導に 寄与する場合は,系全体のσとκはそれぞれの成分の和で 表される。

$$\sigma = \sigma_1 + \sigma_2 \tag{15}$$

 $\kappa_{\rm e} = \kappa_1 + \kappa_2 \tag{16}$

一方,全体のSは,各成分 S_i の σ_i による重みつき平均となる。 $\sigma_1S_1 + \sigma_2S_2$

$$S = \frac{\sigma_1 \sigma_1 + \sigma_2 \sigma_2}{\sigma_1 + \sigma_2} \tag{17}$$

なお,下付きの数字は Fig.3 の各コーンにつけた数字に対応する。

ここまでは2種類のキャリアがある系一般で成り立つが、

それらが電子と正孔の場合, κ について BD 効果による寄 与を考慮する必要がある。それは Price によれば次式で与 えられる。 $^{11-14}$

$$\kappa_{\rm BD} = \frac{\sigma_1 \sigma_2}{\sigma_1 + \sigma_2} T (S_2 - S_1)^2 \tag{18}$$

解

説

したがって、 κ_e は次式のように修正される。

4. 一対のディラック・コーンの結果

我々は、ディラック電子系のLを計算したいわけだが、 式(18)からわかるように、 κ_e への BD 効果の寄与を計算する には各ディラック・コーンの $\sigma_i \geq S_i$ を知る必要がある。ま た、計算で得られる κ_e の信頼性には、計算した $\sigma \geq S$ が実験 を再現するかどうかが深く関係する。そこで、グラフェン で詳しく測定されている、 $\sigma \geq S$ の V_g 依存性を検討した。

Fig.4 は一番簡単な、一対のディラック・コーン(**Fig.3(a**)) と一定の τ を仮定した場合の、(a) σ と(b) Sの計算結果で ある。¹⁵⁾ 温度は 10 K から 300 K まで変化させている。な お、 V_g とこれによってドープされたキャリアの単位面積当 たりの密度nは比例関係にあり、ディラック電子の場合は 以下の関係が成り立つ。

 $V_g \propto n \propto \mu^2$ (20) V_g がないと0Kではキャリアは存在しないので、 σ は0に なるはずである。有限温度ではキャリアの熱励起が起こり、 $V_g = 0$ でも σ は有限で、高温ほど高くなる。正もしくは負の V_g を印加することでキャリアがドープされて σ は増大する。 しかし、グラフェンでは、 $V_g = 0$ において極低温でも有限 の σ が残る。これは最小コンダクタンスの問題として知ら れており、^{45,17,18)}単なるキャリアの熱励起ではなく、ディ ラック電子系に本質的な量子力学的な効果という説明もあ

ここでは割愛する。 同様に V_g を負から正に変化させると,正孔伝導から電子 伝導に変化することに対応して,Sの符号も変化する。|S|が 極大値を持つのは,式(17)にあるように,正孔と電子の寄 与 S_i にそれぞれの重み σ_i が掛かる効果による。すなわち, 電子由来の S_1 は,高い V_g では小さくなるのに対して, σ_1 は 逆に大きくなるので,両者の積 σ_1S_1 はどこかで極大値を持 つことになる。正孔についても同様である。

るが、¹⁹⁻²⁵⁾有限温度のLの議論には大きく関係しないので

実験結果と比較すると、**Fig.4**の計算結果には大きな問題 が二つある。第一は σ が V_g に比例していないことで、第二は $|S(V_g)|の極大値(86 \mu V \cdot K^{-1})が温度に依らないことである。$

Fig.4 Gate voltage (V_g) dependences of (a) electrical conductivity (σ) and (b) thermopower (S) of 2D Dirac cones numerically calculated at different temperatures with the same parameters ($v_F = 1 \times 10^6 \text{ m} \cdot \text{s}^{-1}$ and $\tau_0 = 1 \times 10^{-14} \text{ s}$).¹⁵

5. 緩和時間のエネルギー依存性と水たまりの導入

実験結果を再現するために、いくつかの条件を検討し、 緩和時間のエネルギー依存性と、局所ポテンシャルによる 部分的なドーピングの効果―電子と正孔の水たまり (electron-hole puddles) —を取り入れることにする。

緩和時間のエネルギー依存性としては、

 $\tau(\varepsilon) = \tau_0 |\varepsilon|^{\alpha}$ (21) のようなべキ関数を仮定する方法があり,散乱機構に応じ て異なる α が提案されている。この緩和時間近似の計算で

て異なる α が提案されている。この緩和時間近似の計算で は、遮蔽されていないクーロン・ポテンシャルによる散乱 に相当する $\alpha = 1^{260}$ を用いると、グラフェンで観測されて いる V_g に対して線形の σ を再現することがわかった。

一方「水たまり」とは、グラフェンの最小コンダクタン スの問題を説明する機構の一つである。グラフェンの σ を 測定するには、SiO₂などの絶縁性の基板にグラフェンをの せて、FET(電界効果トランジスタ)構造となるように電 極を配置し V_g を印加する。このとき基板表面上やグラフェ ン試料自体に正電荷や負電荷を帯びた不純物や欠陥が点在 すると、この影響でグラフェンの一部のディラック点が移 動し、 $V_g = 0$ でも電子や正孔が局所的にドープされた状態 になる。このため 0 K でも有限の σ が生じる。

水たまりを計算に導入するために、ここでは元々の一対 のディラック・コーン(Fig.3(a))に加えて、二対のコーン を考える。Fig.5(a)および(b)の計算では、このうち一対を $|\varepsilon_p|=50 \text{ meV}だけエネルギーを下げて電子ドープ(Fig.3(b))$

を、もう一対は同じだけエネルギーを上げて正孔ドープ (Fig.3(c))をしている。また、Fig.5(c)および(d)の計算で は $|\varepsilon_n|=100 \text{ meV}$ としている。

Fig.5 Gate voltage (V_g) dependence of electrical conductivity (σ) and thermopower (S) of 2D Dirac cones with electron-hole puddles numerically calculated at different temperatures with the parameters $v_F = 1 \times 10^6 \text{ m} \cdot \text{s}^{-1}$ and $\tau = \tau_0 |\varepsilon|$; $\tau_0 = 1 \times 10^{-14} \text{ s}$. The results corresponding to that for $|\varepsilon_p| = 50 \text{ meV}$ in Fig. 3 are shown in (a) and (b); and those for 100 meV are shown in (c) and (d).¹⁵⁾

現実のグラフェン試料では、 $V_g = 0$ においてさえ、キャ リア密度の異なる部分が、深さ ε_p の異なる水たまりのよう に試料全体に分布した様子が観測されている。²⁷⁾しかし、 本稿の計算では、簡単のために、3 種類のディラック・コ ーン対のみが存在し、実空間ではそれぞれの状態にあるグ ラフェンが並列回路をなしていると仮定している。

Fig.5(a), (c)の σ の結果は, σ が V_g に対して線形なことと, 温度依存性が小さいことが共通している。前者が τ のエネ ルギー依存性の効果,後者が $V_g = 0$ でもキャリアが存在す ることの効果である。

一方, *S*の*V*_g 依存性には, τ のエネルギー依存性はあま り影響しない。しかし,水たまりの存在によって, Fig.5(b) および(d)に示すように, $|S(V_g)|$ の極値が低温で小さくなる という実験結果²⁸⁻³¹⁾を再現できている。なぜ |S| が極値を 持つかについては, Fig.4 のところで簡単に述べた。高温で は熱励起されたキャリアが増えるために,水たまりの効果 は弱くなるが,低温では σ_i の高い水たまりの寄与が相対的 に大きくなる。このようなコーンの*S_i* は小さいので,結果 として全体の*S* も小さい値になる。

6. 電子熱伝導率とローレンツ数の計算結果

半古典論的な計算でも、いくつかの仮定を取り入れるこ とで、実験の $\sigma(V_g) \ge S(V_g)$ を再現できることがわかったの で、いよいよ BD 効果を取り入れた $\kappa_e \ge L$ の計算結果に 移りたい。

Fig.6 の(a)と(b)は, $|\varepsilon_p| = 50 \text{ meV}$ の水たまりディラック・ コーンを取り入れた場合の, $\kappa_e \ge L \circ V_g$ 依存性で, (c)と(d) は $|\varepsilon_p| = 100 \text{ meV} \circ \sigma$ 場合である。LはL₀で規格化した。

 κ_{e} は V_{g} の大きいところでは、線形な振る舞いを見せる。 傾きや絶対値は、 $\sigma(V_{g})$ の場合よりも温度依存性が大きい。

Fig.6 Gate voltage (V_g) dependence of (a, c) electrical thermal conductivity (κ_e) and (b, d) Lorenz ratio (*L*) normalized by the Sommerfeld value L_0 numerically calculated for 2D Dirac cones with electron–hole puddles. The parameters used for the calculation are $v_F = 1 \times 10^6 \text{ m} \cdot \text{s}^{-1}$, $\tau = \tau_0 |\varepsilon|$; $\tau_0 = 1 \times 10^{-14} \text{ s}$, and $|\varepsilon_p| = 50 \text{ meV}$ for (a) and (b); and $|\varepsilon_p| = 100 \text{ meV}$ for (c) and (d), respectively.¹⁵

 $|\varepsilon_p|=50 \text{ meV} の 300 \text{ K}$ では, $V_g = 0$ に小さいピークがかろう じて見える。これが BD 効果によるものである。 L/L_0 は, 式(4)に従って, Fig.6(a), (c)の κ_e と Fig.5(a), (c)からそれぞ れ計算できる。 L/L_0 にすることで, $V_g = 0$ の鋭い異常がは っきりする。

従来型の半導体でも,BD 効果は真性半導体で顕著な一 方で,キャリア・ドープした不純物半導体では抑えられる。³²⁾ これは,BD 効果が,不純物半導体に存在する大量の電子 あるいは正孔の熱伝導に隠れてしまうためである。

ゼロギャップのディラック電子の場合も同じである。真 性半導体に相当する中性条件の $V_{g} = 0$ では、 L/L_{0} が鋭いピ ークを示す。一方、水たまりの存在は不純物半導体のドー ピングに相当するので、 $|\varepsilon_{p}|=100 \text{ meV}$ の Fig.6(c)の方が、50 meV の Fig.6(a)よりもピークが低くなっている。

また、ピークは高温ほど高くなり、 $|\varepsilon_p| = 50 \text{ meV} o 300 \text{ K}$ では $L/L_0 = 2.8$ に達する。図には示していないが、水たまりがない、単純な一対のディラック・コーンについて計算すると、 L/L_0 は 4.2 にも達し、さらに温度にも依存しないという結果が得られている。¹⁵⁾ そして、いずれの場合も、 $|V_g|$ の高い領域では、Lは L_0 に等しくなる。

以上より,緩和時間近似の範囲内で BD 効果を取り込む ことで,ディラック電子系のLが,中性条件近くでL₀の数 倍に達することを示すことができた。

7. グラフェンの実験結果との比較

すでに述べたように、Fongらは2013 年²⁾(Fig.2(a))と2016 年³⁾(Fig.2(b))に、ジョンソン・ノイズを利用した温度計 測によって、グラフェンの κ_e の測定に成功し、Lのキャリ ア密度n依存性を決定している。式(20)にあるように、Fig.2 横軸のnは V_g に読み替えることができる。

大変恥ずかしいことだが, 我々が BD 効果によるディラ ック電子系の L の増大を指摘した 2015 年には Fong ら の 2013 年の結果を知らなかった。そもそも, グラフェンの κ は室温以上でダイヤモンドよりも高い— κ_{ph} が圧倒的に 支配的なことを意味する—ことが注目されており, κ_e を測 定することが可能だとは考えてもいなかった。このため, Fig.2(a)の結果を目にしたときには, Fig.6(b),(d)の計算結果 との類似に大変驚いた。

その後, Fong らはより広い温度範囲で測定を行い, Fig.2(b) の結果を報告している。ただし,彼らは $n = V_g = 0$ での L/L_0 の ピークは, BD 効果によるものではなく,ディラック電子 系に特有の量子流体力学的効果によるものだとしている。 これは,電子-電子散乱が不純物やフォノンによる電子散乱 よりも速いタイムスケールで起きる場合に適用できる。通 常の金属では実現しないが,Lucas らは 80 K 以下のグラフ ェンでは実現していると主張している。³³⁾

Fong らは、Fig.2(b)の実験結果において、 L/L_0 が 20 に達 することや、 $V_g = 0$ でのLの温度依存性が非常に大きいこと は、我々の BD 効果では説明できず、量子流体力学的な機 構によってのみ説明できるとしている。しかし、我々は τ の 温度依存性を考慮していないので、Lの温度依存性につい ては検討の余地がある。

実験結果が正しいとすると,確かにBD効果では*L/L*₀~20 などという値は,よほど高温にしないと出てこない。しか し,これは半古典論的な BD 効果が「発現しないこと」を 意味せず,少なくとも両方の機構が共存することは可能だ と,筆者は考えている。

また、二次元ディラック電子系では、通常の金属とは逆に、波数ベクトル+kの電子が不純物によって散乱されて-k になる後方散乱の過程が、-kから+kになる過程と弱め合 うことで後方散乱が抑制される。³⁴⁾ そのため、緩和時間近 似を使うことへの疑問もある。しかし、実験的にはグラフ ェンをのせた基板の影響などもある上、Lの見積もりでは κ と σ それぞれからの τ の寄与が打ち消し合うので、本稿の 計算では後方散乱の抑制を無視した。¹⁵⁾

なお、我々は、Fig.3(a)の線形分散だけでなく、電子と正 孔の放物線バンドをゼロギャップで接触させた「普通の」 電子系についても計算を行っており、線形分散と同じよう にBD効果によってLが増大することを確かめている。¹⁵⁾こ れは、BD効果が単純な熱励起による電子-正孔対の拡散に 起因することを考えれば当然である。放物線バンドがゼロ ギャップでつながった系は筆者の知る限り見つかっていな いが、このような非ディラック電子系では、逆に量子流体 力学的効果は起こらないと考えられるので、もしも実験が できれば、Lの増大についてより理解が進むと思われる。

8. α -(BEDT-TTF), I_3 の巨大ローレンツ数

グラフェン以外のディラック電子系の実験結果として, 筆者らが決定した有機伝導体のLについて紹介したい。

筆者らは以前に、微小でもろい結晶の*S*を測定する手法 について本誌にて解説したが、³⁵⁾ それを全面的に改良し、 極細のクロメル-コンスタンタン熱電対(12.7 $\mu m \phi$, Omega)を利用して同一の試料について、 σ 、*S*そして κe 並行して測定する方法を開発した。^{36,37)} これを用いて測定 した、 α -(BEDT-TTF)₂I₃(BEDT-TTF = bis(ethylenedithio) tetrathiafulvalene)という分子性導体の $\sigma \ge \kappa$ の測定例を **Fig.7**に示す。

この物質は、有機ドナー分子 BEDT-TTF からなる結晶の *ab* 面に平行な伝導層と、一価の陰イオン I₃ からなる絶縁 層が、*c* 軸方向に積層した結晶構造を持つ。ドナー層が電 気伝導を担う擬二次元伝導体である。室温以下では導電性 があるが、約 135 K でドナー分子の電荷がサイトによって 大きく異なる電荷秩序状態に相転移して、低温側では絶縁 体的になる。³⁸⁻⁴²⁾ 我々はこの金属-絶縁体(M-I)転移に 伴う $\sigma \ge \kappa$ の変化—いずれも約 135 K 以下で階段状に減少 している—に注目した。これは、自由電子が局在化したた めに、電荷や熱を運ばなくなったためだと考えられる。M-I 転移に伴う熱伝導率の減少 $\Delta \kappa$ は、 κ 全体に比して 10 %に 満たない(Fig.7(b))。減少分が電子熱伝導率 $\kappa_{\rm e} = \Delta \kappa$ なら ば残りは $\kappa_{\rm ph}$ である。だとすると L を次のように決定でき る。

$$L = \frac{\Delta \kappa}{\Delta \sigma \cdot T} = \frac{0.082 \text{ W} \cdot \text{K}^{-1} \cdot \text{m}^{-1}}{65 \text{ S} \cdot \text{cm}^{-1} \times 135 \text{ K}}$$
$$= 9.3 \times 10^{-8} \text{ W} \cdot \Omega \cdot \text{K}^{-2}$$
(6)

興味深いことに、決定したLと自由電子模型から求めた値 L_0 を比較すると、 L/L_0 = 3.7 となり、 α -(BEDT-TTF)₂I₃のLが 異常に大きいことがわかる。

α-(BEDT-TTF)₂I₃ の κ についてはすでに報告があり,⁴³⁻⁴⁵) Hennig らは 135 K の σ の「典型的」な値(450 S·cm⁻¹)を 使って $L \sim L_0$ と決定している。⁴³) しかし、この σ は過大で、 我々の3 個の試料についての測定結果、約70 S·cm⁻¹(#1201, **Fig.7**)、約90 S·cm⁻¹(#0901-2)、約 140 S·cm⁻¹(#0901-3) と比較すると 3–6 倍程度、Tajima らの報告(約 30 S·cm⁻¹, 文 献 46) との比較では 15 倍も大きい。つまり、その分Lは過 小評価されていると考えられる。

我々が得た L/L_0 = 3.7 が誤差によるならば、先ず検討す べきは、試料の形状やサイズに起因した誤差である。しか し、この測定では、同一の試料について、電流も熱流もそ れぞれ均一になるように測定しているので、 $\sigma \ge \kappa$ の絶対 値はともかく、これらの比であるLでは誤差が相殺される はずである。また,他の2個の試料については,さらに大きい $L/L_0 = 5$ という値が得られており,大きいLとしては再現性を確認している。

Fig.7 Temperature dependence of (a) electrical and (b) thermal conductivities of the quasi-two-dimensional organic conductor α -(BEDT-TTF)₂I₃ measured along the most conducting *ab* plane. The inset in (b) shows the same data in an enlarged scale.

さらに、 κ の誤差として熱輻射の影響も考えられる。試料および κ 測定のための参照試料は、ヒーターからの熱流により周囲より高温となる。このため熱が周囲に輻射で漏れ出して、試料の κ が過大に見積もられてしまう。実際、200-250 K以上で、 κ が高温ほど大きく観測される場合がしばしばある。³⁷⁾ただし、シュテファン-ボルツマンの輻射則を考慮すると、輻射強度は T⁴に比例して低温では無視できるようになる。我々は温度依存性の再現性などから、200 K以下では輻射の影響は無視できると考えている。

それでは、なぜ α-(BEDT-TTF)₂I₃ という、高温側では一 見金属的な物質で BD 効果が起こりうるのだろうか? 実は この物質では、フェルミ準位付近で二つのバンドがゼロギ ャップで接していることが、理論 47,48 や種々の実験によっ て明らかとなっている。 49 この接点付近では、バンドは波 数ベクトル k に対して線形であり、ディラック電子系の仲 間だとみなせるのである。

ー方、この物質特有の複雑な状況もある。計算によると、 バンドはフェルミ準位近傍で、2 種類の傾いた— $v_{\rm F}$ に異方 性がある—ディラック・コーン対で近似される。実は、常 圧では2種類のコーン対のディラック点のエネルギーはフ ェルミ準位に一致しておらず、一方は電子ドープ、もう一 方は正孔ドープの状態にある。圧力下ではエネルギー差が 小さくなり、1.5 GPa 以上ではディラック点がフェルミ準 位に一致するとされている。 50,51

したがって、Fig.7 の高温側の電子状態は、Fig.3(a)というよりは、Fig.3(b)と(c)を合わせた状態に近いと考えられる。 この場合 BD 効果は Fig.6(b)や(d)の場合よりも弱まり、Lの 値もより小さくなると予想されるので、実験結果であるL/Lo ~4を BD 効果だけで説明するのは難しいかもしれない。ま た、他の分子性導体で成功している本稿と同様の計算手法 では、α-(BEDT-TTF)₂I₃のSの異方性や温度依存性を説明で きないこともわかっているので、BD 効果の寄与自体もグ ラフェンの場合ほど簡単には計算できないという問題もあ る。これらは将来の課題である。

他の分子性導体のLを決定した例としては,擬一次元金 属としてよく知られた TTF-TCNQ (tetrathiafulvalenetetracyanoquinodimethane) がある。この物質は約55 K で電 荷密度波の発生を伴う相転移を起こす。それに伴う $\kappa \ge \sigma$ の 減少から, Salamon らは $L \sim L_0$ と報告している。⁵²⁾ この物 質はフェルミ準位に大きい状態密度を持つ金属なので,BD 効果によるLの増大がないのはもっともである。

9. まとめ

ウィーデマンーフランツの法則の破れという観点から, ディラック電子系のローレンツ数 L が自由電子金属の値 L_0 の数倍も大きくなることを, BD 効果を取り入れた緩和時 間近似の数値計算によって示した。計算によるディラック 電子系の電気伝導率,熱電能および電子熱伝導率の外部電 場依存性は,ディラック電子系として知られるグラフェン の実験結果をよく再現した。別のディラック電子系である 分子性導体 α -(BEDT-TTF)₂ I_3 のLもグラフェン同様大きく なることを, σ と κ を同時に測定することで明らかにした。

BD 効果は 1950 年代から真性半導体について知られてい る現象だが、これが現代の物性物理の注目分野であるディ ラック電子系の物性にも大きく影響する可能性があること は、経験的な法則以上に、物理の普遍性を物語っているの ではないだろうか。

謝 辞

α-(BEDT-TTF)₂I₃の試料は兵庫県立大学・大学院物質理学 研究科の圷(佐藤)あかね博士ならびに圷 広樹助教(現 大 阪大学大学院理学研究科准教授)に提供していただきまし た。ここに感謝申し上げます。本研究は JSPS 科研費 JP25400380, JP16K13840の助成を受けたものです。

文 献

- C. Uher, in "Thermal Conductivity—Theory, Properties, and Applications", ed. T. M. Tritt (Kluwer Academic / Plenum, New York, 2004) p. 86.
- K. C. Fong, E. E. Wollman, H. Ravi, W. Chen, A. A. Clerk, M. D. Shaw, H. G. Leduc, and K. C. Schwab, *Phys. Rev.* X 3, 041008 (2013).
- J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe. T. A. Ohki, and K. C. Fong, *Science* 351, 1058 (2016).
- K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, *Proc. Natl. Acad. Sci. U.S.A.* **102**, 10451 (2005).
- 5) A. K. Geim and K. S. Novoselov, *Nat. Mater.* **6**, 183 (2007).
- A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Tweldebrhan, F. Miao, and C. N. Lau, *Nano Lett.* 8, 902 (2008).
- S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Oijatukiv, D. L. Nika, A. A. Balandin, W. Bao, F. Mial, and C. N. Lau, *Appl. Phys. Lett.* **92**, 151911 (2008).
- W. Cai, A. L. Moor, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S. Ruoff, *Nano Lett.* 10, 1645 (2010).
- S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, and R. S. Ruoff, *ACS Nano* 5, 321 (2011).
- A. V. Sukhadolau, E. V. Ivakin, V. G. Ralchenko, A. V. Khomich, A. V. Vlasov, and A. F. Popovich, *Diamond Relat. Mater* 14, 589 (2005).
- 11) P. J. Price, Philos. Mag. 46, 1252 (1955).
- 12) J. R. Drabble and H. J. Goldsmid, "Thermal Conduction in

Semiconductors" (Pergamon, New York, 1961) p.115.

- G. S. Nolas and H. J. Goldsmid, in "Thermal Conductivity—Theory, Properties, and Applications", ed. T. M. Tritt (Kluwer Academic / Plenum, New York, 2004) p.110.
- 14) H. J. Goldsmid, "Introduction to Thermoelectricity" (Springer, Berlin, 2010) p. 34.
- H. Yoshino and K. Murata, J. Phys. Soc. Jpn. 84, 024601 (2015).
- 16) F. J. Blatt, P. A. Schroeder, C. L. Foiles, and D. Greig, "Thermoelectric Power of Metals" (Plenum, New York, 1976) p.17.
- 17) K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, *Nature* **438**, 197 (2005).
- 18) Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H. Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, *Phys. Rev. Lett.* **99**, 246803 (2007).
- 19) K. Ziegler, Phys. Rev. Lett. 80, 3113 (1998).
- 20) N. H. Shon and T. Ando, J. Phys. Soc. Jpn. 67, 2421 (1998).
- 21) M. I. Katsnelson, Eur. Phys. J. B 51, 157 (2006).
- 22) J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker, *Phys. Rev. Lett.* **96**, 246802 (2006).
- 23) P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, *Phys. Rev.* B 74, 235443 (2006).
- 24) K. Nomura and A. H. MacDonald, *Phys. Rev. Lett.* **98**, 076602 (2007).
- M. Trushin and J. Schliemann, *Phys. Rev. Lett.* 99, 216602 (2007).
- 26) E. H. Hwang, E. Rossi, and S. Das Sarma, *Phys. Rev.* B 80, 235415 (2009).
- 27) J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. von Klizing, and A. Yacoby, *Nat. Phys.* 4, 144 (2008).
- 28) Y. M. Zuev, W. Chang, and P. Kim, *Phys. Rev. Lett.* 102, 096807 (2009).
- 29) P. Wei, W. Bao, Y. Pu, C. N. Lau, and J. Shi, *Phys. Rev. Lett.* **102**, 166808 (2009).
- 30) J. G. Checkelsky and N. P. Ong, *Phys. Rev.* B 80, 081413(R) (2009).
- 31) D. Wang and J. Shi, Phys. Rev. B 83, 113403 (2011).
- 32) H. J. Goldsmid, Proc. Phys. Soc. B 69, 203 (1956).
- 33) A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, *Phys. Rev. B* **93**, 075426 (2016).
- 34) T. Ando, T. Nakanishi, and R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).
- H. Yoshino, K. Saito, K. Murata, and I. Ikemoto, *Netsu Sokutei* 27, 77 (2000).
- 36) H. Yoshino, G. C. Papavassiliou, and K. Murata, Synth. Met. 159, 2387 (2009).
- 37) Y. Iwasaki, H. Yoshino, N. Kuroda, K. Kikuchi, and K. Murata, J. Phys. Soc. Jpn. 84, 054601 (2015).
- 38) H. Kino and H. Fukuyama, Synth. Met. 70 (1995) 921.
- 39) H. Seo, J. Phys. Soc. Jpn. 69, 805 (2000).
- 40) R. Wojciechowski, K. Yamamoto, K. Yakushi, M. Inokuchi, and A. Kawamoto, *Phys. Rev. B* 67, 224105 (2003).
- 41) T. Takahashi, Synth. Met. 133-134, 261 (2003).
- 42) T. Kakiuchi, Y.Wakabayashi, H. Sawa, T. Takahashi, and T. Nakamura, J. Phys. Soc. Jpn. 76, 113702 (2007).
- 43) I. Hennig, K. Bender, D. Schweitzer, K. Dietz, H. Endres, H. J. Keller, A. Gleitz, and H. W. Helberg, *Mol. Cryst. Liq. Cryst.* 119, 337 (1985).
- 44) M. Matsukawa, K. Hashimoto, N. Yoshimoto, M. Yoshizawa, Y. Kashiwaba, and K. Noto, *J. Phys. Soc. Jpn.* 64, 2233 (1995).
- 45) M. Ikebe, M. Matsukawa, H. Fujishiro, N. Yoshimoto, M. Yoshizawa, and K. Noto, J. Phys. Soc. Jpn. 65, 651 (1996).
- 46) N. Tajima, S. Sugawara, M. Tamura, R. Kato, Y. Nishio and K. Kajita, *Euro. Phys. Lett.* 80, 47002 (2007).

- 47) S. Katayama, A. Kobayashi, and Y. Suzumura, J. Phys. Soc. Jpn. 75, 054705 (2006).
- 48) A. Kobayashi, S. Katayama, Y. Suzumura, and H. Fukuyama, J. Phys. Soc. Jpn. 76, 034711 (2007).
- 49) ディラック電子系としてのα-(BEDT-TTF)₂I₃について比較的最近のレビューとして次がある。K. Kajita, Y. Nishio, N. Tajima, Y. Suzumura, and A. Kobayashi, *J. Phys. Soc. Jpn.* 83, 072002 (2014).
- 50) K. Kajita, T. Ojiro, H. Fujii, Y. Nishio, H. Kobayashi, A. Kobayashi, and R. Kato, J. Phys. Soc. Jpn. 61, 23 (1992).
- 51) N. Tajima, S. Sugawara, R. Kato, Y. Nishio, and K. Kajita, *Phys. Rev. Lett.* **102**, 176403 (2009).
- 52) M. B. Salamon, J. W. Bray, G. DePasquali, R. A. Craven, G. Stucky, and A. Schultz, *Phys. Rev.* B 11, 619 (1975).