

スレイター・ポーリング曲線 Slater-Pauling curve

3d 遷移金属の磁化は、主に電子のスピン角運動量sに起 因し, s 当たりボーア磁子µaで表される。3d 遷移金属・合 金の一原子当たりの飽和磁化(磁気モーメント)MをµB単 位で表し、平均の電子数 n の関数としてプロットした曲線 をスレイター・ポーリング曲線 (Fig.1) と呼ぶ。図のよう にn ~ 26.3 でピーク M ~ 2.4 となる上に凸の曲線が基本で, ピークの両側の傾きが±1, n ~ 24 および 28.6 のところで M =0となる。単体金属の M の値が, μ の整数倍でないこと は 3d 電子がバンドを形成している証拠であり、右側の半 直線部は合金の M が空の 3d バンド電子の数に比例するこ とを示唆している。しかし、 Mn, Cr, V の合金や Fe-Ni 合金の 30 at% Ni 付近においては枝分かれして M が急激に 減少し、左側の半直線部も単純なバンドモデルでは説明で きない。これらの問題も含めた 3d 遷移金属合金の磁性は, コヒーレントポテンシャルモデルにより統一的に理解でき る。すなわち、個々の構成原子の固有電子状態は維持され るが,合金化により変化し,Mの大きさや向きも変化する。 これらは、中性子回折や核磁気共鳴の実験などで得られて いた微視的な磁気的性質とよく対応する。

Fig.1 Slater-Pauling curve: average atomic moments, *M* versus electron concentrations, *n* for binary 3d transition metal-alloys.

(東京電機大大学院 隅山 兼治)

ウムクラッププロセス umklapp process

結晶格子中でのフォノン,自由電子,電磁波などの波で は,波の振動数 vの波数 q への依存性である分散関係が重 要となる。このうち振動数は非常に大きな値もとることが できるが,波数はその絶対値が,結晶の単位格子の大きさ の逆数(厳密には逆数に2πを掛けたもの)である逆格子べ クトルGよりも大きくはなれず, 第一ブリユアンゾーンと 呼ばれる範囲に制限される。そのため、二つの波1と2が 出会って相互作用により新しい波3を生じるとき、振動数 については保存則 v1+ v2 = v3 が成り立つ(両辺にプランク 定数を掛けたものがエネルギーの保存則)が、波数につい ては q1 + q2 が第一ブリユアンゾーンの外に出る場合には 保存則は成り立たず、 $q_1 + q_2 = q_3 + G$ となる運動量 q_3 の波 が生じる。このとき、 $q_1 + q_2$ と q_3 とは空間の x, y, zの 三方向のうち少なくとも一つで符号が逆になる。このこと は、その方向について元の二つの波を合わせたのとは逆方 向に進む波が生じたことを意味しており、それは波の伝播 を阻害することになる。この課程をウムクラッププロセス と呼び、フォノンの伝播では高温で熱伝導率が低下する原 因となっている。なお, umklapp とはドイツ語で折りたた みを意味し、分散関係を示す図で $q_1 + q_2$ が大きさGだけ 折りたたまれたことを示している。

(滋賀県立大学 松岡 純)

デバイモード・アインシュタインモード Debye mode・Einstein mode

固体中の原子の熱振動は量子力学に従う。そのため、古 典力学に従う振動では振動数 v だけでなく振幅を連続的に 変えられるので振動のエネルギーも連続的に変えられるが, 実際の熱振動では間隔が hv のとびとびのエネルギーしか とることができない。Einsteinは、固体中の原子の振動がす べて同じ振動数 叱をとるという近似のもとで熱振動を量 子化し、固体の比熱が低温では Dulong-Petit の法則が示す 3Rよりも小さくなる理由を説明した。Debye はこの理論を 改良し、ある振動数 vb 以下では固体中の振動モードの数 が振動数の二乗に比例し、 いり上では零になるというモデ ルにより、多くの金属や希ガス、塩化ナトリウムのような イオン結晶など、様々な固体の比熱が説明可能なことを示 した。しかしポリエチレンのような有機高分子ではこのよ うな単純な近似で比熱の実測値を説明できなかったため, Tarasov は 1950 年に, 高分子鎖内の C-H の振動は一つの振 動数のみで振動するアインシュタインのモデルに, C-C 間 の振動は振動モードの数が振動数によらず一定である1次 元デバイモデルに、また高分子鎖間の相互作用は振動モー ドの数が振動数の二乗に比例する3次元デバイモデルに従 うとし、これらに対応する三つの特性温度を用いて比熱の 実測値を説明できることを示した。これを Hirao らは 1979 年に酸化物ガラスに適用し、共有結合性の網目の格子振動 を1次元デバイモデルと3次元デバイモデルの和に、また イオン結合性であるアルカリイオンやアルカリ土類イオン と酸化物イオンの間の振動をアインシュタインモデルに従 うとして、酸化物ガラスの比熱の温度依存性および組成依 存性を説明した。このモデルにおいて、格子振動の振動モ ードのうち1次元および3次元のデバイモデルに従う部分 をデバイモード、アインシュタインのモデルに従う部分を アインシュタインモードと呼ぶ。たとえばアルカリケイ酸

塩ガラス xR₂O・(100-x)SiO₂(R は Na, K など)では, ア ルカリ酸化物の割合 x が同じでアルカリイオンの種類が異 なるとき,デバイモードの特性温度はアルカリ元素の種類 によらずほぼ一定で,アインシュタインモードの特性温度 はアルカリ元素の原子番号が増えるほど低くなる。

(滋賀県立大学 松岡 純)

放射光 X 線回折 synchrotron X-ray diffraction

放射光とは高速で運動している電子または陽電子が、磁 場中で力を受けて方向を変えたときに、そのエネルギーの 一部を失って発生する光のことである。放射光は連続X線 源であるので、モノクロメーターを用いて単一の波長の X 線を取り出して,X線粉末回折測定を行なうことができる。 この回折測定では、実験室系の X線粉末回折データにおい て見られる Kα1 と Kα2 によるピークの分裂がなく,精度の 高いデータを収集することができる。また強度と平行度が 高いので、計数統計の向上により測定時間が短縮され、角 度分解能を向上できる。さらに平行度が高いので、*θ*角を 固定して複数のカウンターで 2θ角をスキャンすることに よりデータを収集でき、測定時間を一層短縮できるばかり でなく, 高温や高圧など試料特殊環境装置の設計が容易で ある。またビームの大きさを小さくしたデバイシェラー光 学系の使用や狭い試料部分の測定も容易であることも試料 特殊環境での測定を容易にしている。また波長を選定でき るため、試料からの蛍光の除去による精度の向上や短波長 のX線を使用して,低い面間隔の反射の測定も可能である。 透過法で短波長のX線を使用すると、X線の吸収が低くな り精度が向上する。これは電子密度解析など精密構造解析 において利点となる。また短いパルス光の繰り返しである ことを生かして数十ピコ秒の時間分解測定を行うこともで きる。

(東京工業大学 八島正知)

リートベルト法 Rietveld method

リートベルト法とは中性子,X線,あるいは放射光粉末 回折の強度データをできるだけ再現するような結晶構造モ デルを最小二乗法により決める解析手法の一つである。具 体的には格子定数,原子の位置(分率座標),その位置を占 有している原子の割合(占有率),原子の位置の分布(原子 変位パラメーター),格子歪,結晶子径などの結晶パラメー ターが求まる。求めたい結晶パラメーターの初期値を与え, 非線形の最小二乗法を用いた繰り返しの計算過程を経て, より正確な結晶パラメーターを求める。この過程を精密化 という。リートベルト解析の結果を評価する指標として 種々の信頼度因子(Reliability Factor,以下 *R* 因子と記す) が定義されている。もっとも重要な *R* 因子は重みを付けた *R* 因子

$$(R_{\rm wp} = \left[\frac{\sum_{i} w_i \left(y_{\rm obs}^i - y_{\rm cal}^i\right)^2}{\sum_{i} w_i \cdot \left(y_{\rm cal}^i\right)^2}\right]^{1/2})$$

であり、バックグラウンドも含めたすべての強度データ y_{obs}^{i} がどれだけ構造モデルから計算した強度データ y_{cal}^{i} と一致するかを示す指標である。ここでiと w_{i} はそれぞれ 測定点の番号とi番目のデータ点に対する重みを示す。あ る一つの観測回折パターンについては、R因子が小さいほ ど解析結果の信頼度が高く、観測値と計算値の一致が良い と考えられる。いくつかの構造モデルの候補がある場合に は、同じ観測回折パターンを各モデルについて解析して、 R_{wp} が低いことが、モデルを正しいと考える一つの目安と なる。ただし原子変位パラメーターや占有率が負になるな ど、物理的に意味の無い解ではいくらR因子が低くても意 味は無い。また、R因子は装置や測定法、特に被検試料の 種類に大きく依存するため絶対的な指標ではない。たとえ ばバックグラウンドや回折強度が高いデータに対する R_{wp} は低くなる。

文献:八島正知,野村勝裕,電気化学会誌 *Electrochemistry* **73**,71-76 (2005).

(東京工業大学 八島正知)

最大エントロピー法 maximum-entropy method

最大エントロピー法 (Maximum-Entropy Method: MEM) は与えられた情報とその誤差から、わかっていない情報を 推定する手法であり、画像処理や信号処理の分野で多くの 応用例がある。MEM を結晶構造解析に応用することによ って, X 線または放射光回折データから電子密度分布が, 中性子回折データから原子核密度分布(正確には散乱振幅 密度分布)が得られる。空間群や対称性を満たす限り,任 意の分布が許されるので、電子や原子の複雑な空間分布を 調べることができ、化学結合、原子位置と占有状態の不規 則性、異方性ならびに非調和な熱振動、イオンの拡散経路 などを研究するのに適している。また、リートベルト解析 において仮定した単純な構造モデルではわかっていない原 子の位置を探して、構造モデルを修正することにも利用さ れる。従来のフーリエ法に比べて打ち切り効果が少ない, 負の電子密度分布が現れないなどの利点がある。 文献:八島正知, 日本結晶学会誌 46,248 (2004).

(東京工業大学 八島正知)

文献:橋爪大輔,八島正知,「粉末 X 線解析の実際 第 2 版」
(8章 8.4節),中井泉,泉富士夫編,朝倉書店,東京,
p.142 (2009).