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Solubility and related phenomena constitute one of the oldest fields in physical chemistry, and also one of the 
most important. Given its wide scope, a short review cannot possibly be comprehensive, and I shall focus on just a few 
selected topics which reflect my current research interests, such as the solubility of supercritical solutes (gases) in 
liquids. First, I shall concisely present the thermodynamic formalism relevant for the study of nonelectrolyte solutions 
and indicate the most significant recent experimental results. Selected aspects of solubility data reduction and data 
correlation will be touched upon, including a critical discussion of some popular approximations. This will be 
accompanied by a survey of current estimation techniques for indispensable auxiliary quantities, such as virial 
coefficients and partial molar volumes at infinite dilution. One of the goals here is to clarify issues frequently 
overlooked and to dispel misconceptions encountered in the literature. Finally, a few experimental results obtained for 
dilute aqueous nonelectrolyte solutions will be discussed, and their relevance in biophysical chemistry indicated. 
Inevitably, pride of place will be given to the Henry fugacity (also known as Henry’s law constant) and to various key 
caloric quantities which may be derived therefrom through van’t Hoff analysis of high-precision solubility data. 
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The entire history of chemistry bears witness to the extraordinary importance of the phenomena 
of solubility. 

Joel H. Hildebrand and Robert L. Scott 
 

The Solubility of Nonelectrolytes 
3rd edition, Reinhold, New York, 1950 
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1. Introduction 
 

For more than a century, the physico-chemical 
investigation of solubility and related phenomena has 
belonged to the most important topics in chemistry, a 
fact concisely summarized in 1950 by the introductory 
statement of Hildebrand and Scott quoted above.1) 
Indeed, the study of the solubility of nonelectrolytes in 
liquids has contributed decisively to the development of 
the highly formalized general discipline of solution 
thermodynamics,2-6) for instance by providing idealized 
solution models, such as the one based on the Lewis-
Randall (LR) rule, or the one based on Henry’s law 
(HL).5-8) Frequently, the terms solution and mixture are 
used synonymously to indicate a homogeneous phase 
(gaseous or liquid or solid) containing two or more 
chemically different substances, though the latter term 
should preferably be restricted to the case where all the 
components are in the same physical state as the solution. 

Most of this review will focus on liquid binary 
nonelectrolyte solutions, though occasionally extensions 
to multi-component systems will be indicated. A solution 
will be called dilute when one component, called the 
solute, is present in much smaller quantity compared 
with the other component, called the solvent. When 
considering only interactions with nearest neighbors, a 
rough estimate of the dilute region is provided by x2 < 
0.01, where x2 denotes the solute mole fraction. Of 
particular interest are properties in the limit of infinite 
dilution: they will be indicated by a superscript ∞ 
attached to the property symbol. Finally we note that the 
term solubility at any specified temperature and pressure 
is usually associated with the limiting composition of the 
liquid solution phase in the presence of a co-existing 
phase (saturation solubility). 

Liquid-phase solubility data9) are required in 
surprisingly diverse areas of the pure and applied 
sciences, for instance in chemical engineering, 
geochemistry, environmental science, biophysics and 
biomedical technology. In particular we note that 
separation processes based on vapor-liquid equilibria 
(VLE), liquid-liquid equilibria (LLE) and solid-liquid 
equilibria (SLE) all involve liquid multicomponent 
systems, and that the majority of chemical synthesis 
reactions takes place in the liquid phase. When we focus 
on water10,11) as solvent, the following three aspects are 
of particular importance: 

 Water is the most abundant substance on the surface 
of the earth. The approximate water supply amounts 
to roughly 13.4×1020 kg, of which the saline ocean 
waters constitute by far the largest portion: ca. 
96.5%, i.e. about 12.9×1020 kg. Only a small fraction 

of the earth’s freshwater (less than 0.3%), i.e. 
roughly 0.001×1020 kg, is found in rivers and lakes, 
the remainder being stored in the Arctic and 
Antarctic ice caps, in glaciers and in fresh 
groundwater.12) 

 Water is the only substance on earth that occurs 
naturally in all three states of matter, which fact is 
closely related to the size of the earth and that the 
earth’s orbit is located in the so-called habitable 
zone of the solar system.13) In turn, this is 
prerequisite for the emergence of life on earth.14-21) 

 Liquid water (and to a lesser extent water vapor and 
ice), sustains life on earth as we know it. In fact, 
water is the principal constituent of all living 
organisms, making up about 70% by weight of the 
human body. In the biochemistry of the cell, water 
plays an essential role for the structure, stability, 
dynamics and function of biomacromolecules22-25) to 
the extent that it may no longer be regarded as being 
a mere medium in which bio-processes occur, but, as 
recently suggested by Ball24,26), rather as an 
indispensable active matrix, something like a 
“biomolecule” itself. 

Considering the wide scope of solubility-related fields 
indicated above, it is not surprising that the subject has 
such a vast literature. 

At this juncture, perhaps a few words are in order 
to indicate the three main reasons for the enormous 
efforts invested into experimental, theoretical and 
computer-based work on solubility in general, and on 
liquid-phase nonelectrolyte solubility in particular. First, 
it is hoped that by studying solution properties we will 
be able to improve our knowledge of interactions 
between molecules of different species in bulk liquid 
phases. Second, the appearance of new physical 
phenomena not found in the pure components is 
scientifically fascinating as well as challenging, and 
adds a new dimension to research. These two aspects 
are of great importance in the real world of applied 
chemistry, chemical engineering and, of course, 
biophysical chemistry, since the majority of 
technologically important processes and of 
biophysically significant systems involves liquid 
solutions, and the practitioner there has to deal with 
them efficiently (and pragmatically). This covers the 
third major reason. Fig.1 illustrates the relative 
positions of experiment, theory and computer 
simulation by showing what may be learned from a 
comparison of respective results under idealized 
conditions.27) 

Experiments are the fundament of science, yet the 

huge number of potentially useful solubility data 
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connected with binary, ternary, quaternary, etc. 

solutions at different temperatures and pressures 

effectively precludes the experimental determination of 

solubilities for all but a few representative key systems 

of physico-chemical/technological interest. This is best 

illustrated by calculating the number of multicomponent 

solutions containing r components which can be formed 

out of, say, n = 1000 important chemicals.  
 
 

 
 
Fig.1 The three pillars of science: experiment, theory 
and computer simulation. The double-headed arrows 
indicate possible, fundamentally important comparisons 
(from Wilhelm27)). 

 
 
This r-combination is given by 

  ( 1) ( 1)
( , ) =                     (1)   

!
n
r

n n n r
C n r

r

   
 　　

whence C(1000,2) = 4.995×105 different binary solutions 
may be formed, C(1000,3) = 1.66167×108 different 
ternary solutions, C(1000,4) = 4.141712475×1010 
different quaternary solutions, and so forth. Reliable and 
effective prediction methods are thus an indispensable 
tool of the trade, which requirement is met, for instance, 
by group contribution methods (DISQUAC, 
UNIFAC).28-31) While they work reasonably well for 
excess molar Gibbs energies GE and excess molar 
enthalpies HE, however, predicted results for excess 

molar heat capacities at constant pressure ECP  are 

frequently not satisfactory. Similar comments apply to 
the COSMO-RS and related models.32-39) 

Evidently, a short review must be selective, and 
thus I shall focus on just a few areas which reflect my 
current research interests. For instance, VLE involving a 

supercritical solute, that is the solubility of gases in 
liquids, will be discussed in some detail, including a 
discussion of the van’t Hoff type analysis of high-
precision solubility data. Pride of place will be given to 
the Henry fugacity (this quantity is also known as 
Henry’s law constant) which is certainly one of the most 
misunderstood quantities in physical chemistry. Aqueous 
nonelectrolyte solutions, a topic to which I have 
contributed for about 35 years, will receive special 
attention. In fact, Henry fugacities and some closely 
related derived quantities may be used advantageously 
for the discussion of hydrophobic effects, which are 
generally regarded as playing an important role in a   

wide variety of biological processes, such as protein 
folding and the self-assembly of amphiphiles into 
membranes.40-55)  

The coverage throughout will be necessarily brief, 
and for details the interested reader should consult the 
pertinent literature provided. Note that my choices for 
references are illustrative and not comprehensive. For the 
omission of many interesting papers I would like to offer 
my apologies in advance. 
 

2. Thermodynamic Fundamentals 
 

In this section I will present a brief overview of 
classical thermodynamics applicable to non-electrolyte 
solutions in general, and to solutions of supercritical 
substances, i.e. gases, in liquids in particular.7,8,56-60) 
When discussing solutions and solubility, say, the 
solubility of a pure gas in a pure liquid at a given 
temperature T and pressure P, one is either 
predominantly interested in quantities which characterize 
the equilibrium solubility itself in the presence of both 
coexisting phases, for instance in the vapor-liquid 
distribution coefficient or K-value of the solute in the 
solvent, or in single-phase properties, such as the partial 
molar volume or the partial molar heat capacity of the 
solute in the liquid solution. Note that experimental LLE 
and SLE determinations are usually performed close to 
isobaric conditions, while VLE experiments are 
preferrably performed isothermally. 

A general criterion for phase equilibrium in PVT-

systems (V denotes the molar volume) of uniform 

temperature and pressure is the equality of the chemical 

potential i  of each constituent component i in all 

coexisting phases α, β, γ,···, or equivalently, the equality 

of the fugacity if  of each constituent component i in all 

coexisting phases. For vapor-liquid equilibrium in an N-

component system of uniform T and P, where α = V 

designates vapor, and β = L designates liquid, we thus 

obtain.6)  
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     V V L L, , , , ,    1,2,...,          (2)T P x T P x i Ni i i i   　　

or, more conveniently for practical application, 
 

   V V L L, , , , ,    

1,2,...,  (3) 

f T P x f T P xi i i i

i N

      
   

　　　　　　    　    　     　

where N is the number of components,  Vxi  is the set 

of vapor-phase mole fractions and  Lxi  is the set of 

liquid-phase mole fractions; for any phase π we have 

π π πx n nii i i  , where πni  is the amount of substance 

of component i in this phase, and π 1xi i  . The link of 

eq. (3) with measurable VLE-related quantities may be 
established by two entirely equivalent formal 
approaches.5-8) In the first, the equilibrium condition is 
rewritten in terms of the fugacity coefficient of 
component i in solution in phase π = α, β, γ,···, which 
quantity is defined by 

   π π π π π, , , ,          (4)   T P x f T P x x Pi i i i i       
   

　　

Adopting the widely used notation Vx yi i , and 

Lx xi i , the condition for VLE may now be expressed 

as 

   V L, , . , ,  

                                             1,2,...,  (5)

y T P y x T P xi i i i i i
i N

 

 　　  
For obvious reasons, this approach is known as the 

 ,  method. 

 The thermodynamic description of liquid-liquid 
equilibria and solid-liquid equilibria is based on the same 
general criteria stated above for VLE, eqs. (2) and (3). 
For instance, indicating the coexisting liquid phases by 
L1 and L2, respectively, we obtain for LLE at uniform 
temperature and pressure 

L L L L1 1 2 2, , , , ,   

                         1,2,...,           (6) 

f T P x f T P xi i i i

i N

      
      

      
　　　　　　  

Further treatment of LLE and SLE, however, is 
predominantly based on the use of activity coefficients, 
which quantities will be formally introduced below, and 
corresponding models. Real systems show a rich 
diversity of LLE and SLE behavior, meriting separate 
reviews each.6,61-65) In this review, these two topics will 
not receive any further consideration. 

 Perfectly general equations, valid for both fluid 
phases V and L, allow the calculation of the component 
fugacity coefficients at any desired pressure or amount-

of-substance density 1 V   from PVT equations-of-

state (EOS) for the solution/ mixture, with the proviso, of 
course, that the EOS is valid over the entire range of 
integration.   In     terms    of    a    volume-explicit    EOS 

  π, ,Z PV RT Z T P xi
    
 

, where Z is the 

compression factor of the solution in phase π = V or L, 
and R is the gas constant, and dropping the superscript π 
where unambiguously permissible, 

  

 
0

dπln 1 ,
, ,

πconstant ,   (7)

P

P
nZ ni i T P n Pj i

T xi


 

     
   　

　　　 　　　　　　　　　

with n ni i . When a pressure-explicit EOS 

 π, ,Z Z T V xi
   
 

is used, we obtain 

  

 

dπln 1 ln ,  
, ,

π                            constant ,                           (8)

V

V
nZ n Zi i T nV n Vj i

T xi




 

      
  

Since the majority of the EOS in use is pressure-explicit 
rather than volume-explicit, the most important 
exception being the volume-explicit virial EOS, eq. (8) is 
more useful in VLE problems than eq. (7). 
 In the second approach, the component fugacities in 
the vapor phase are again expressed in terms of fugacity 
coefficients, but the liquid-phase fugacities of the 
components are now expressed in terms of appropriately 
normalized liquid-phase activity coefficients. For a 
binary solution at constant T and P, we have the 
following possibilites: 

 When ideal-solution behavior is based on the Lewis-
Randall rule (LR), see below, that is when we assume 
the validity of 

 
   LR L, , , ,                          (9)f T P x x f T Pi i i i

 　　　

over the entire composition range 0 1ix  , the 

corresponding activity coefficients are given by 
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 
   
   

LR , ,

L LR, , , ,

L L, , / , ,   

  1,2  (10)

T P xi i

f T P x f T P xi i i i

f T P x x f T Pi i i i
i









　　

　　

　　　　　　　　　　　　　　　　

whence 

 
   

L , ,

LR L, , ,   (11)

f T P xi i

T P x x f T Pi i i i 　　　　 　　　　

The superscript asterisk denotes, as always, a pure-
substance property: 

   L L, ,       (12)f T P T P Pi i
  　　　　     　

is the fugacity of pure component i in either a real or a 
hypothetical liquid state at (T,P) of the liquid solution, 

and  L ,T Pi
  is its fugacity coefficient. The 

activity coefficients are said to be normalized 
symmetrically when the definition eq. (10) applies for 
all components, and  

LR 1   as  1,     constant ,               (13)x T Pi i  
This approach is also known, somewhat loosly, as 
being based on Raoult’s law (see below). 

 Ideal-solution behavior based on Henry’s law (HL), see 
below, is characterized by assuming the  

 validity of 
 

   HL , , , ,               (14),f T P x x h T Pi i i i j 　　　　

over the entire composition range 0 1ix  , whence 

the corresponding activity coefficients are given by 

 

     
   

1, 2;     (15)

HL L HL, , , , , ,

L , , , ,   ,

i i j

T P x f T P x f T P xi i i i i i

f T P x x h T Pi i i i j



 





　　　　　　　　　　　　 　　　

　　　　　

and thus 

     L HL, , , , , (16),f T P x T P x x h T Pi i i i i i j 　
 

 
Here,  ,,h T Pi j  denotes the Henry fugacity of 

component i dissolved in liquid j at T and P of the 
liquid solution. This quantity is also known as Henry’s 
law constant. The value of the Henry fugacity depends 
not only on T and P but also on the identities of solute i 
and solvent j (the other component), whence the double 
subscript has been added. The activity coefficients are 
said to be normalized unsymmetrically when for the 
solvent (i = 1) the definition eq. (10) applies, and for 
the solute (i = 2) the definition eq. (15) applies. Their 
limiting behavior is thus given by  

LR 1  as  1,   constant ,        (17a)1 1x T P   　　

HL 1  as  0,   constant ,       (17b)2 2x T P   　　  
Since experiment indicates that at constant T and P 

the limiting value of the ratio π πf xi i  for π 0xi   is 

finite, by de l’Hôpital’s rule 

 
π πd πlim , ,  ,π ππ d π0 0

  constant ,                         (18)

f fi i h T Pi j
x xx i ii xi

T P

   
    
   

     

　　　　　　 　　　

is obtained. Equation (18) defines the Henry fugacity 

 π ,,h T Pi j  of i dissolved in j for any phase π (L or V). 

At π 0xi  , πfi  must also become zero, and the 

limiting slope of the curve πfi  vs. πxi  at constant T and 

P is identified as the Henry fugacity. Henry’s law is a 
limiting law, and for real solutions it is approximately 

valid for small values of πxi , with the experimental 

precision determining the observed apparent validity 
range. 
 At constant temperature and pressure, the limiting 

composition dependence of π πf xi i  at the other end of 

the composition range, i.e. for π 1xi  , is evidently 

characterized by π πf fi i
 . Through application of 

the isothermal-isobaric Gibbs-Duhem equation 

π πd ln d lnπ π1 2 0                     (19)1 2π πd d1 2

f f
x x

x x
  　　　　　

 
in conjunction with eq. (18) used for the other 
component j i , 

 
π πd πlim , ,     
π ππ d π1 1

constant ,     (20)

f fi i f T Pi
x xx i ii xi

T P

   
    

   
     

　　　　　　　　　 　　　　　

is obtained, where  ,f T Pi
   denotes the fugacity of 

pure component i at T and P of the solution and in the 
same physical state. Equation 20 is called the Lewis-
Randall rule. It is valid in any phase π (L or V) and 

shows that in the limit for π 1xi  both πfi  and its 

dervative with respect to πxi  at constant T and P become 

equal to the fugacity of pure i. The Lewis-Randall rule is 



Review 

Netsu Sokutei 39 (2) 2012 
66 

a limiting law, and for real solutions it is approximately 

valid for values of πxi  near unity, with the experimental 

precision determining the observed apparent validity 
range. 
 For real systems, in general it is found that 

   L, ,,h T P f T Pi j i
 . We note that as a 

consequence of the above, by differentiating the defining 

equation for  LR , ,T P xi i , eq. (10), with respect to xi 

at constant T and P, we find that the limiting slope of the 

activity coefficient curve for 1ix   is zero:  

LRd
lim 0,    constant ,                 (21)

d1

i T P
xx ii

 
  
   

　　

 The ideal-solution model based on the Lewis-
Randall rule, i.e. eq. (9), is preferrably used when 
component i can exist as a pure liquid at the temperature 
of the solution. Whenever a component cannot exist as a 
pure liquid at the temperatur of the solution, a situation 
encountered with solutions of supercritical solutes 
(gases) in liquids, the alternative ideal-solution model 
based on Henry’s law, i.e. eq. (14), may be 
advantageously used for that component (the solute). The 
condition for vapor-liquid phase equilibrium may now be 
recast either into  

     V LR L, , , , ,    

                                                                      (22)

T P y y P T P x x f T Pi i i i i i i  

　　
or, equivalently, into 

     V HL, , , , ,        ,

   (23)

T P y y P T P x x h T Pi i i i i i i j 

　　　　　　　　　　　　　　　　　　　

These two approaches are known as the  ,  methods. 

At this juncture, several points should be 
emphasized (for details see refs. 5-8, 57-60). Since the 
approaches to the thermodynamic description of VLE 
introduced above are all equivalent, the various 
quantities associated with them are, of course, connected 
with each other by exact relations. For instance, 
comparison of eq. (11) with eq. (16) shows that 

 1 or 2,  1 or 2;  i j i j    

 
 

 

 

LR ,, , ,
                     (24)

HL L, , ,

h T PT P x i ji i

T P x f T Pi i i







　　　

Thus, in the limit 0ix   one obtaines for the activity 

coefficient at infinite dilution in the symmetric (LR) 
convention 

LR L                                         (25),h fi i j i   　　　

whence 

HL LR LR                                      (26)i i i    　　　

and 

1

LRlim 1                                          (27)
ix i

 　　   　

For the sake of a more compact notation, the 
specifications (T,P,xi) etc. have been omitted. 

By definition, eq. (4) applies for every component i 
in solution in any phase π, whence according to the 
defining relation for Henry’s law, eq. (18), the important, 
generally valid relation 

 

 

 

 

π ,

π πlim , ,
π 0

π π, ,1
lim

ππ 0

π ,,
,       

constant ,                 (28)

T Pi

T P xi i
xi

f T P xi i

P xx ii

h T Pi j

P
T P










 
 

  
 
 



　　

　　

　　

　　　　　　　　 　　　

is obtained,7,8,57-59,66) where  π ,T Pi
  is the fugacity 

coefficient of component i at infinite dilution in phase π. 
Equation (28) immediately yields the thermodynamically 
correct limiting value of the Henry fugacity as the 
critical point of the solvent (with critical temperature Tc,1, 
critical pressure Pc,1 and critical molar volume Vc,1) is 
approached:7,8,57-59,66) 

 

 

lim ,2,1 s,1
c,1

s,1 c,1

V ,             (29)2 c,1 c,1 c,1

h T P
T T

P P

T P P





　　　　　　　 　

where use was made of the equilibrium condition 
prevailing at the critical point, that is 

   V L, ,            (30)2 c,1 c,1 2 c,1 c,1T P T P   　　

Here,  ,2,1 s,1h T P  denotes the Henry fugacity 

determined experimentally at the vapor pressure 

 s,1P T  of the solvent. Note that the subscript s always 

denotes saturation conditions. A considerably more 
elaborate derivation was presented by Beutier and 
Renon67). Equation (29) conclusively shows that Hayduk 
and Buckley’s assertion68) that the solubilities of 
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different gases in a given solvent tend to coincide at a 
temperature near the solvent’s critical temperature is 
untenable. 

The following equations provide some rigorous 
links between a thermodynamic description of a liquid 
solution/mixture based on activity coefficients and one 
based on fugacity coefficients and hence directly on an 
equation of state. For instance, 

LR L L                                      (31)i i i    　　　　　

HL L L                                      (32)i i i    　　　　

and 

LR L L                             (33)i i i     　　　　　

Finally, I emphasize the close connection with residual 
quantities in (T,P,x)-space.7,8) For instance  

 
 

  

L

L

R,L

,

,

exp ,               (34)

i

i

i

f T P P

T P

G T P RT













　　　　　

　　　　　 　　

where R,LGi
  is the residual molar Gibbs energy of 

pure liquid component i, and 

 

  

( , ),

L ,

R,Lexp ,                (35)

h T P Pi j

T Pi

T P RTi









　　　　

　　　　 　　

where R,L
i

  is the residual chemical potential of 

component i at infinite dilution in solvent j in the liquid 
phase. Of course, entirely analogous relations are valid 
for the phase π = V, i.e. the vapor phase. 

Equations (5), (22) and (23) may each serve as a 
rigorous thermodynamic basis for the treatment of VLE. 
The decision what approach to adopt is by and large a 
matter of taste and convenience. VLE involving fairly 
simple fluids may conveniently be treated in terms of the 

 ,   approach, eq. (5), because the use of a single 

EOS valid for both phases V and L has some 
computational advantage and a certain aesthetic appeal. 
However, the emphasis is on “fairly simple”, since no 
generally satisfactory EOS for dense fluids of practical, 
that is to say, chemical engineering importance has as yet 
been developed. At low to moderate pressures and for 
mixtures where the critical temperatur Tc,i of each 
component is distinctly larger than the experimental 
temperature, and when the interest is on the composition 
dependence of the various thermodynamic quantities 
over the entire composition range   0 ≤ xi ≤ 1 (or a large 
part thereof), VLE data reduction, VLE calculations and 

VLE predictions are preferably based on the classical 

Lewis-Randall  ,   formalism, eq. (22), implying the 

symmetric convention for the activity coefficients. This 
approach is readily extended to multicomponent systems. 
However, when we consider a binary system for which 
component 2, designated the solute, is supercritical, no 
experimental vapor pressure of the solute exists, and thus 

its fugacity  L ,2f T P  as a real, pure liquid at the 

temperature of interest does not exist. An alternative 
approach is thus indicated, the most natural choice being 

the use of the Henry’s law  ,   formalism, eq. (23), 

for the solute, while for the solvent, component 1, the 
Lewis-Randall formalism, eq. (22), is maintained. It has 

the unquestioned advantage that the Henry fugacity 2,1h , 

and hence HL
2 , are unambiguously accessible 

according to an experimental procedure as indicated by 
eq. (18) and detailed below. The experimental quantities 
may be obtained, at least in principle, to any desired 
degree of accuracy.7,57) Since the Henry’s law 
formulation for the component fugacity of the solute (i 
=2), see eq. (16), is of central importance in the 
discussion of dilute solutions, it may also be used when T 
< Tc,i, i.e. for subcritical VLE when the focus is on high 
dilution properties. We note, however, that rigorous 
extensions to mixed solvents are rather complex. The 
ensuing problems have been discussed in depth by Van 
Ness and Abbott.69) 

The Henry fugacity of a supercritical solute 2 
dissolved in liquid solvent 1 is defined by eq. (18) with π 
= L. For VLE, because of the phase equilibrium 
criterium eq. (3), and eq. (4), 

   L V, , , ,                   (36)2 2 2 2 2f T P x T P y y P 　　

where all quantities refer to the actual VLE conditions. 
In conjunction with the definition eq. (18), eq. (36) 
provides the classical experimental basis for the 

determination of    L , ,2,1 s,1 2,1 s,1h T P h T P  from 

isothermal VLE measurements (determination of P, x2, 

y2) at decreasing pressure  s,1P P T , and 

concomitantly decreasing x2 → 0 and y2 → 0, according 
to  
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   

 

L , ,2 2, lim2,1 s,1
0 22

V , ,2 2 2lim ,   
0 22
02

constant                                (37)

f T P x
h T P

xx

T P y y P

xx

y P

T



 
    
 
 
    
 



　　　　　　

　　　　　　

That is to say, the Henry fugacity referring to the liquid 
phase is obtained as the intercept of a plot, at constant T, 

of  V , ,2 2 2 2T P y y P x against x2.
70) Here, 

 V , ,2 2T P y  must be calculated with a suitable vapor-

phase EOS (see eqs. (7) and (8), and the appropriate 
section below). 

Once  ,2,1 s,1h T P has been obtained by this 

extrapolation method, the VLE measurements at 

 s,1P P T  allow extraction of the liquid-phase 

activity coefficients HL
2 , though frequently 

experimental imprecision precludes obtaining reliable 
results. For isothermal conditions, at each experimental 
composition x2 eq. (16) applies, 

     L HL, , , , ,   (38)2 2 2 2 2 2,1f T P x T P x x h T P 　　

necessarily with a different corresponding experimental 
total equilibrium pressure. Thus, for each VLE 

experiment the respective Henry fugacities 2,1h  as well 

as the corresponding activity coefficients HL
2  at x2 

refer to different experimental pressures. For the 
reduction, correlation and further use of high-precision 
gas solubility data, it is advantageous to select at each 

temperature the vapor pressure  s,1P T  of the solvent 

as reference pressure. With this convention and taking 
into account the pressure dependences of the various 
quantities involved7,57,70) (see also below), i.e. 

 

   

s,1

,2,1

L ,2, exp d         (39)2,1 s,1

P

P

h T P

V T P
h T P P

RT

 
    

 
  
 　　

and 

 
 

   

s,1

HL , ,2 2
HL , ,2 s,1 2

L L, , ,2 2 2exp d       

                           (40)

P

P

T P x

T P x

V T P x V T P
P

RT





 
    

 
  
　  

　　　　　　　　　　　  　

we obtain the pressure-corrected isothermal-isobaric 
liquid-phase activity coefficient based on Henry’s law at 

the reference pressure  s,1P T  at mole fraction x2 via 

 

 
 

 

s,1

HL
2 s,1 2

V L
2 2 2 2 2

2 2,1 s,1

, ,

, , , ,
= exp d   

,

                   (41)

P

P

T P x

T P y y P V T P x
P

RTx h T P




 
   
 
  
　

　　　　　　　　　　　　　　　

Here,  L , ,2 2V T P x  is the partial molar volume of the 

solute at mole fraction x2 in the liquid phase, and 

 L ,2V T P  is the partial molar volume of the solute at 

infinite dilution. The exponentials in eqs. (39) – (41) are 
known as Poynting correction factors; and the integrals 
as Poynting integrals. The preexponential factor on the 
right-hand side of eq. (41) is a dimensionless group 
containing the experimental data, the Henry fugacity 
already extracted therefrom, and the vapor-phase 
fugacity coefficient. In order to evaluate the Poynting 
integral in eq. (41), information is needed on the 
composition dependence of the partial molar volume of 
the solute as well as on its pressure dependence. Note 

that (I) at high dilution    L L, , ,2 2 2V T P x V T P , 

and (II) for gaseous solutes well below the critical 
temperature Tc,1 of the solvent, the pressure dependence 
of the partial molar volumes is rather small. Thus at low 
pressures, the Poynting correction factor typically differs 
from unity by only a few parts per thousand.70,71) The 
magnitude of the Poynting correction is illustrated in 
Fig.2, for a series of fictitious pure liquids, by replacing 

L
2V  in the Poynting integral by LV  , which denotes a 

pure-liquid molar volume. Here, the pressure dependence 

of LV   has been accounted for by the modified Tait 

equation (MTE),57,72) a versatile liquid-phase EOS which 
is usually satisfactory for pressures up to about 100 MPa: 
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   
1 /L L L, 1s ,s s

      (42)

m
V T P V m P PT

       
　　　　　　　　　　　   　　 　　 　

 L L ,s sV V T P   is the molar volume of the liquid 

at saturation, sP  is the vapor pressure, L
,sT
  is the 

isothermal compressibility of pure saturated liquid, and 
m is a pressure-independent parameter. For many organic 
liquids, experimental values cluster around m = 10, with 
only a small temperature dependence. 

The composition dependence of the constant-
temperature, constant–pressure activity coefficients 

 HL , ,2 s,1 2T P x  obtained via eq. (41) may be 

represented by any appropriate correlating equation 
compatible with the number and the precision of the 
experimental results. 

 
 
 

 

Equations (37) and (41) are the key equations in the 
classical sequential approach to gas-solubility data 
reduction (supercritical solute) and most frequently 
adopted. Based on the definition eq. (18), entirely 
equivalent expressions relating the Henry fugacity to 
limiting slopes may be derived. They simply reflect the 
focusing of interest on the solute in a composition range 
very close to pure solvent, though, of course, “very close” 
varies from system to system. 

The sequential approach to gas solubility 
measurements makes little use of the information 
thermodynamics supplies on the VLE equilibrium 
equation pertaining to the solvent, but, of course, for 
general equilibrium calculations it is needed. The 
resulting expressions are analogous to those used for 
subcritical, Lewis-Randall-based VLE calculations. For 
instance, for a binary solution, by combining eq. (22) for 
i = 1 (the solvent) with eq. (23) for i = 2 (the solute), and 
incorporating the appropriate Poynting corrections, the 
total experimental pressure is obtained as7,57)  

 

   
s,1

s,1

1L LR , ,1 s,1 1 s,1 1 V
1

L
1exp d

1HL, , ,2 2,1 s,1 2 s,1 2 V
2

L
2exp d     (43)   

P

P

P

P

P x f T P x

V
P

RT

x h T P T P x

V
P

RT









 
    
 
  



 
    
 
  





　　

　　

　　 　　　　　　　　　

Here,  L L V,s,1 1 s,1 s,1 s,1f f T P P      is the 

orthobaric fugacity of the pure solvent, see eq. (12), 

 V V ,s,1 1 s,1T P    is the fugacity coefficient of 

pure solvent vapor at saturation,  V V , ,T P yi i i   

denotes the vapor-phase fugacity coefficient of 
component i (= 1 or 2) in the vapor phase at mole 

fraction yi, and  L L , ,1 1 1V V T P x  in the Poyinting 

integral for the solvent is its partial molar volume in the 
liquid solution. 

To summarize: depending on the type of liquid 
solution, both the LR-based and the HL-based 
approaches, as outlined above, provide adequate 
prescriptions for data reduction, correlation and 
calculation in experimental vapor-liquid phase 

Fig.2 Poynting correction MTE as a function of applied 
pressure P − Ps, at T = 298.15 K, for a series of 
fictitious pure liquids, all with isothermal 

compressibility , and molar 

volumes at saturation as indicated. Using the modified 
Tait equation (MTE),57,72) one obtains 

 MTE =  
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equilibrium investigations. The central quantities of 
interest in a binary system, that is 

L L LR LR HL,  ,  ,  ,  ,  1 2 2,1 1 2 2f f h     , are 

thermodynamic properties pertaining to the liquid phase. 
For instance, LR-based activity coefficients lead to 
excess molar Gibbs energies 

E LRln                                     (44)G RT xi i
i

  　　　

of the liquid solution, the temperature dependence of the 
Henry fugacity is given by 

   ln , ,2,1 2                (45)
2

h T P H T P

T RTP

  
   
  

　　

and its pressure dependence by  

   Lln , ,  2,1 2              (46)
h T P V T P

P RT
T

 
  
  

　　　

Here, 
pgL

2 2 2H H H      is the the partial molar 

enthalpy change on solution (enthalpy of solution) with 

L
2H   denoting the partial molar enthalpy of the solute 

at infinite dilution in the liquid solvent and pg
2H   

denoting the molar enthalpy of the pure solute in the 
perfect-gas (pg) state. 

Equation (45) provides the rigorous basis for 
obtaining enthalpies of solution through van’t Hoff 
analysis of high-precision solubility data of gases in 
liquids.7,8,56,57,70,71,73,74,102) Since  

   
,2 ,                  (47),2

H T P
C T PPT

P

     
 
 

　　

the partial molar heat capacity change 

pgL
,2 ,2 ,2C C CP P P

     on solution may also be 

obtained by van’t Hoff analysis. Here, L
,2CP
  is the 

partial molar heat capacity at constant pressure of the 
solute at infinite dilution in the liquid solvent, and 

pg
,2CP


 is the molar heat capacity at constant pressure of 

the pure solute in the perfect-gas state. 
Equation (46) allows the calculation of the Henry 

fugacity of solute 2 dissolved in liquid solvent 1 for any 
desired pressure (Poynting correction, see eq. (39)), 

which is one of the main reasons why reliable L
2V   

data over wide temperature ranges are so much in 
demand. The analogous equation for the LR activity 
coefficients (i = 1 or 2) is 

 

   

LRln , ,

,

L L, , ,
             (48)

T P xi i
P

T xi

V T P x V T Pi i i
RT

  
  
 


　　　　 　　　

and the pressure dependence of the HL activity 
coefficient is given by 

 

   

HLln , ,2 2

, 2
L L, , ,2 2 2            (49)

T P x

P
T x

V T P x V T P

RT

  
  
 


　　　　 　　

 The most important application of VLE relations is 
in the design of separation processes for the chemical 
industry. A frequently used measure of the tendency of a 
given component to distribute itself between the 
coexisting equilibrium phases is the vapor-liquid 
distribution coefficient or K-value. For a binary solution 
at equilibrium pressure P, it is defined by 

  2,                       (50)2,1
2 equil

y
K T P

x

 
   
 

　　　　　

and thus refers only to the actual conditions at phase 
equilibrium. With the help of eq. (5), the general 
expression  

 
 
 

L , ,2 2,                      (51)2,1 V , ,2 2

T P x
K T P

T P y




 　　　　　

is obtained, which provides the link to EOS-based 
calculations. Using eqs. (33) and (28), the infinite-
dilution limit of the K-value may be profitably expressed 
as7,8,59,75) 

 
 
 
   

 

,2,1 s,1

L ,2 s,1
 

V ,2 s,1

LR L, ,2 s,1 2 s,1
     (52a)

V ,2 s,1

K T P

T P

T P

T P T P

T P





 










 




　　　　

　　　　 　　　

 
 

,2,1 s,1
             =            (52b)

V ,2 s,1 s,1

h T P

T P P 
　　　　　　

 
Another practically important and widely used 

distribution coefficient is the Ostwald coefficient 
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 ,2,1L T P ,7,8,57,75-76) which quantity is the ratio of the 

amount-of-substance densities (amount-of-substance 
concentrations) of solute 2 in the equilibrium phases at 
experimental temperature T and corresponding 
equilibrium pressure P: 

 
L
2,                           (53)2,1 V
2 equil

L T P




 
 
 
 

　　　　　

where π π π π π
2 2 2x V x   , π = L or V, πV  is the 

corresponding molar volume, and π  is the total 

amount-of-substance density. 
 The infinite-dilution limit of the Ostwald 
coefficient, 

   , lim ,2,1 s,1 2,1
s,1

L
2lim           (54)
V

s,1 2 equil

L T P L T P
P P

P P





 


 
 
   

　　　　　　 　　　

is rigorously connected with the Henry fugacity 

 ,2,1 s,1h T P :7,8,57,75-77) 

 

   
,2,1 s,1

V V ,        (55)s,1 2 s,1L,2,1 s,1 s,1

L T P

RT
Z T P

h T P V




 


　 　　

and with the K-value: 

   
V

1 s,1
,                (56)2,1 s,1 L,2,1 s,1 s,1

V
L T P

K T P V


 

 
　　

 

Here, V V
s,1 s,1 s,1Z P V RT   is the compression factor 

of pure saturated solvent vapor, L
s,1V   is the molar 

volume of the pure saturated liquid solvent and V
s,1V   is 

the molar volume of the pure saturated solvent vapor. 
Both the Ostwald coefficient and the K-value are 
distribution coefficients pertaining to the solute dissolved 
in the solvent in the two coexisting phases L and V, and 
therefore refer only to the actual equilibrium pressure P 
at the experimental temperature T. In contradistinction to 
these quantities, I reiterate that the Henry fugacity is a 
single phase property, which fact is most clearly 
indicated by eq. (35): this equation shows that 

 L ,2 T P   and hence ( , )2,1h T P P  are equal to the 

exponential of the residual chemical potential of solute i 

at infinite dilution in liquid solvent j, divided by RT, at 

temperature T and at any pressure equilibP P . As 

such, for use in vapor-liquid phase equilibrium problems, 
i.e. data reduction, data correlation and data prediction, 
only their values referred to the actual equilibrium 
pressure are relevant. At infinite dilution, we have for the 

equilibrium pressure  s,1P P T , and thus we have 

( , )2,1 s,1h T P as the centrally important quantity. 

Finally we note that 

   

 

lim , lim ,2,1 s,1 2,1 s,1
c,1 c,1

V Llim 1       (57)s,1 s,1
c,1

L T P K T P
T T T T

V V
T T

 
 

  


　　　　　 　　　

 

When T→Tc,1, the limiting values of  ,2,1 s,1L T P  and 

of  ,2,1 s,1K T P  are identically unity, and yield 

directly the important relation eq. (29).75,76) The Ostwald 
coefficient is widely used in the discussion of 
hydrophobic effects,42-44,70)which topic is, as indicated in 
the introduction, a vast research area by itself. 
 

3. Tackling Experimental Reality:  
Subtleties of Approximation 

 
In the preceding section, the formalism relevant for 

the thermodynamic description of vapor-liquid equilibria 
has been summarized concisely, with the focus being on 
binary solutions containing a supercritical component, 
that is, on the solubility of gases in liquids. In this section 
I shall briefly review a few selected popular 
approximations, dictated by experimental reality, to 
some of the exact relations obtained so far, as well as 
selected estimation methods for key properties. For more 
comprehensive overviews see refs. 6, 7 and 57, and, in 
particular, the monograph by Poling, Prausnitz and 
O’Connell.78) 
 Since Henry fugacities and related quantities are 
usually referred to orthobaric conditions, reliable vapor 

pressure data  s sP P T  are indispensable, as are data 

on critical temperature, critical pressure and critical 
volume. For water, the most interesing and important 
solvent, Poling et al.78) recommend Tc = 647.14 K, Pc = 
22.064 MPa, and Vc = 55.95 cm3·mol−1. 
 As pointed out above, when using the classical 
sequential approach for the determination of the Henry 
fugacity, as exemplified by eqs. (37) and (41), a vapor-
phase EOS is required for calculating the fugacity 
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coefficient  V , ,2 2T P y . Since the majority of gas-

solubility measurements are performed in the low to 
moderate pressure domain, virial equations are the 
equations of choice. They are superior to cubic EOS and 
computationally convenient. Using a two-term volume-

explicit virial equation, i.e.,   VV , , 2Z T P y PV RT  

 1 , 2B T y P RT 

 

, in eq. (7) leads to the widely 

used expression for the fugacity coefficient of 
component i in a binary vapor mixture 

 V 2ln ,    , 1,2,    (58)12
P

B y i j i ji ii jRT
     　

with  212 12 11 22B B B    . Here, 

1 11 2 22 1 2 12B y B y B y y     is the second virial 

coefficient of the mixture, B11 and B22 are the second 
virial coefficients of the pure components, and B12 
designates a composition-independent interaction virial 
coefficient (cross-coefficient). The fugacity coefficient 
of the solute at infinite dilution in the vapor phase is thus 
given by 

 Vln 2                             (59)2 12 11
P

B B
RT

    　　

and the fugacity coefficient of pure component 2 by 

Vln                                    (60)2 22
P

B
RT

   　　　 　　

The quite popular rule-of-thumb 

   V V, , ,2 2 2T P y T P    may frequently be rather 

unsatisfactory: 

e.g. for the evaluation of V
2
  it only holds if 

  212 11 22B B B  . 

 Frequently, experimental results on second virial 
coefficients, in particular for mixtures,79) are not 
available. Even for pure water vapor the situation below 
about 400 K is not entirely satisfactory and subject to 
intensive research.80) Thus, for VLE data reduction and 
VLE calculation one has to depend heavily on 
semiempirical estimation methods, which are 
predominantly based on the extended corresponding 
states theorem. One of the most popular and reliable 
methods is due to Tsonopoulos which, since its inception 
in 1974, has been revised and extended several times.81) 
The reduced pure-substance second virial coefficient at a 

reduced temperature r, c,iT T Ti   of a substance with 

an acentric factor i  is given by 

     
3

0

r, c,
               (61), r,

c,
l

B T Pii i i l
b B Tl i iRT i



 　　

where 10,b i  , and 

    1 10
0.1445 0.3300 0.1385r, 2r, r,

1 1
0.0121 0.000607          (62)

3 8
r, r,

B T i T Ti i

T Ti i

  

 　　　　　

and 1,b i i , and 

   1
r,

1 1 1
0.0637 0.331 0.423 0.008       

2 3 8
r, r, r,

                                                               (63)

B T i

T T Ti i i

   

　　　

The next term must be included for substances with 

sizeable reduced dipole moments r,p i .7,27) For several 

compound classes, such as ketones and alkyl halides, 

specific expressions for  2, r,b pi i  are known,81) and 

    12
                                        (64)r, 6

r,

B T i
T i

 　　

For the hydrogen-bonded normal 1-alkanols, in the units 

used in ref. 81, 0.08782,b i  , and an additional 

substance-specific parameter  3, r,b pi i  is needed 

( 3,methanol 0.0525b  ),81) and 

    13
                                         (65)r, 8

r,

B T i
T i

  　　

For water, 0.01092,waterb   , and 03, waterb  . 

“New”, “experimental” results may lead to revisions, in 

particular of the Tsonopoulos functions 
 2

B  and 
 3

B , 

and the coefficients 2,b i  and 3,b i . 

 In order to estimate second virial cross-coefficients 

Bij , appropriate semiempirical combining rules have to 

be used to obtain the characteristic interaction 

parameters c,T ij , c,P ij , c,V ij , ij , 2,b ij  and 3,b ij  

from the pure-substance quantities. These interaction 
quantities then replace the corresponding pure-substance 
quantities in eqs. (61) through (65) to yield cross-

coefficients  r,B Tij ij  at a reduced temperature 



The Art and Science of Solubility Measuremants: What Do We Learn ? 

Netsu Sokutei 39 (2) 2012             
73 

r, c,T T Tij ij . Nearly always, these combining rules 

incorporate one additional binary interaction parameter 

kij  (usually distinctly smaller than 1) which is intended 

to improve on the geometric-mean approximation for 

c,T ij , that is 

  1 2
1              (66)c, c, c,T k T Tij ij i j  　　　　　　

However, kij  also contains, implicitely, empirical 

corrections for the remaining simple combining rules for 

c,P ij , c,V ij , ij , etc. Equation (66) is definitely the 

most crucial combining rule for the prediction of Bij. 
Experiment-based optimized values of kij for quite a few 
mixture types have been reported in the literature, 
together with appropriate correlations. For instance, for 
binaries where both components belong to either rare 
gases, or simple molecular gases, or essentially nonpolar 
hydrocarbons, kij may be estimated from78 

 1 2
8 c, c,

1                                 (67)
31 3 1 3

c, c,

V Vi j
kij

V Vi j

 
  
 

　　

Other (semi-)empirical estimation methods may be found, 
for instance, in refs. (6), (78) and (82). 
 In the key relations eq. (37) and (41) for the 
classical, sequential approach to gas-solubility data 
reduction, the influence of composition upon the liquid-
phase fugacity of the solute has been separated formally 
from the influence of pressure (see eqs. (46) and (49)). 
However, a rigorous evaluation of the Poynting integrals 
would require a detailed knowledge of the composition 
dependence as well as the pressure dependence of the 

partial molar volume  L , ,2 2V T P x  at each 

temperature of interest. Such comprehensive information 
will rarely be available, whence for the great majority of 
solubility measurements approximations at various levels 
of sophistication must be introduced to allow adequate 
VLE data reduction. The situation becomes particularly 
demanding at high pressures and/or when the solvent 
critical region is approached, where Poynting corrections 
become significant. With solubility experiments, usually 
the focus is on properties at high dilution, and typical 
gas-solubility measurements do not cover large 
composition ranges. At pressures reasonably close to 

s,1P , and thus at very small mole fractions x2 and at 

temperatures well below the critical temperature of the 
solvent, to an excellent approximation the partial molar 

volume  L , ,2 2V T P x  of eq. (41) may be replaced by a 

pressure-independent partial molar volume at infinite 

dilution  L
2 s,1,  V T P . The preferred experimental 

methods for determining L
2V   are either precision 

dilatometry or precision densimetry or magnetic float 
methods.83-91) However, compared to the large body of 
data on gas solubilities,9,56,92,93) experimental results on 

L
2V   (and on L

2V  in general) of gases dissolved in 

liquids are not plentiful, whence reliable semi-empirical 
estimation methods are indispensable. Evidently, more 
experimentally determined partial molar volumes at 
infinite dilution, covering large temperature ranges 
including the critical region, are highly desirable.  
 The Handa-Benson correlation84,94) is a versatile 
method for the prediction of partial molar volumes of 
gases at infinite dilution in non-aqueous solvents at 
atmospheric pressure, usually within about ± 10% of 
known experimental values: 

L
c,2 2 c,2

0.088 2.763               (68)
Lc,2 c,2 s,1

P V TP

RT T 


 


　　

where 

L
,s,1L                                   (69)s,1 s,1L

,s,1

T P
P

T







  


　 　　

is the internal pressure,  

   1L L L
,1 1 1V V TP P


      is the isobaric 

expansivity, and    1L L L
,1 1 1V V PT T


       is 

the isothermal compressibility, respectively, of the pure 
liquid solvent. 
 Scaled particle theory (SPT) has also been used 
successfully by Pierotti,95) among others,56,96-99) to 

calculate Henry fugacities, 2H , ,2CP
  and L

2V   

of non-polar and polar gases in non-polar and polar 
solvents, including water. Note, however, that in order to 
obtain reasonable results, the experimental density of the 

pure solvent as well as its derivatives L
,s,1P
  and 

L
,s,1T
  have to be used. If a two-step dissolution 

process is considered, that is to say (I) creation of a 
cavity in the solvent large enough to accommodate a 
solute molecule, and (II) introduction into the cavity of a 
solute molecule which interacts realistically with the 
surrounding solvent molecules, such a heuristical 
application of SPT yields 
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 L L                (70)2 cav ,s,1 intV V G RTT
    　　　

Here,  cav cavV G P
T

   , cavG  is the partial 

molar Gibbs energy of cavity formation, and intG  is the 

partial molar Gibbs energy of interaction between the 
solute molecule and the solvent. The SPT expressions for 
these quantities are well known and may easily be found 
in the literature. Interestingly, the isothermal 
compressibility of water at 1.01325×105 Pa (= 1 atm) 
exhibits a minimum value at 46.5 °C, i.e. 

L 1 11
,1 Pa 44.149 10T
    , as compared to 

L 1 11
,1 Pa 50.885 10T
     at 0 °C and 

L 1 11Pa 49.019 10,1T
     at 100 °C, 

respectively.100) In conjunction with eq. (70), this quite 
unusual temperature dependence suggests that, at least 

for some solutes in water, L  . 2V vs T  may also show a 

(shallow) minimum, which behavior has indeed been 
reported for a few solutions.91,101,102) Additional high-
precision work in this area would be desirable. For many 
liquids, a self-consistent set of effective Lennard-Jones 
(6,12) interaction parameters has been provided by 
Wilhelm and Battino.97) The correlational and predictive 
powers of SPT-based methods can be substantially 
improved by introducing the concept of temperature-
dependent effective size parameters as suggested by 
Wilhelm,103) and by Schulze and Prausnitz.104) 

 At the critical point of the solvent, L
2V   of a 

volatile solute diverges to +∞.86,87,105-112) The source of 
this divergence is seen by considering the definition of 
the solute’s partial molar volume 

 
L

L L 1                     (71)2 2
2 ,

V
V V x

x
T P

    
  

　　

and the thermodynamic identity 

L L

L2 2 ,, , 2

L L      (72)
, 2 L2 ,

V V P

x P x
T VT P T x

P
V

T x x
T V



                       

 
    

　　　　　　 　　　

Here, L
, 2T x

  denotes the isothermal compressibility of 

the dilute solution with mole fraction x2. In the limit 

02x  , L
, 2T x

 approaches the isothermal 

compressibility of the pure solvent, which quantity 

diverges strongly at the solvent’s critical point. Note, 
however, that the critical exponent characterizing the 
divergence behavior depends on the path of approach. 

The factor   L2 ,
P x

T V
   in eq. (72) is a slowly 

varying function remaining finite at the critical point of 

the solvent where for 2 0x   it becomes the Krichevsky 

parameter.113-115) This important parameter determines 
the sign and the amplitude of the critical divergence of 

L
2V   and other partial molar quantities of the solute at 

infinite dilution, such as the partial molar enthalpy or the 
partial molar isobaric heat capacity. It may be evaluated 
from the initial slopes of the critical line of a binary 
solution, i.e. at infinite dilution of the solute: 

,c

Kr
L2 ,

c,c ,cdd ds,1
   (73a)

d d d2 2cr.l. cr.l.
c ,c,c dd ds,1

       =     (73b)
d d dcr.l. 2 cr.l.

P
A

x
T V

PP T

x T x

PP T

T T x

 
    

     
              

                      

　　　 　　

　 　　

Here, the superscript c indicates evaluation at the critical 
point of the pure solvent, and the subscript cr.l. indicates 
that the derivative is taken along the critical line of the 
solution. In the case of aqueous solutions, the limiting 
slope of the vapor pressure curve at the critical 
temperature of pure water116) is 

 c 5 1d d 2.68 10  Pa Ks,1P T    ; note that at the 

critical point this quantity equals the isochoric thermal 

pressure coefficient  ,,1 c,1 1 c,1T V VV
     

 
1 c,1

P T V V     of fluid component 1. The 

Krichevsky parameter is positive for volatile 
nonelectrolytes, and negative for electrolytes, because 
adding, say, a small amount of salt to liquid water will 
lower the pressure. For convenience I list values of AKr 
for a few selected aqueous nonelectrolyte solutions:115) 

AKr/MPa = 163 for Ar, 148 for Xe, 172 for N2, 166 
for O2, 162 for CO, 163 for CH4, 163 for C2H6, 154 
for C3H8, 141 for C2H4, 203 for CF4, and 213 for 
SF6. 

The uncertainties of these values are appreciable, and 
depending on the evaluation method used, are expected 
to amount to about ± 20 MPa. 
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 As concerns the limiting value of the finite partial 

molar volume of the solvent, L
1V , contrary to intuition 

for some paths it does not converge to the critical molar 

volume of the pure solvent,110,112) c,1V . For instance, 

along the critical line 

Llim                           (74)1 c,1 Kr
02

V V RT A
x

 


　　 　

 Correlating, and a fortiori predicting, partial molar 
volumes at infinite dilution over large temperature and 
pressure ranges including the critical region has 
remained a challenge.117-120) The major recent 
contribution by Plyasunov, Shock and O’Connell120) 
presents a corresponding-states approach based on the 
use of the infinite-dilution solute-solvent direct 
correlation function integral 

L
21                                        (75)2,1 L
,1

V
C

RTT


  


　　

 With precision gas solubility experiments, the focus 
is usually on the high-dilution region, with the Henry 
fugacity being the “object of desire”.56,70,71,92,96,102,121-128) 
However, with rather few exceptions, precision solubility 
measurements do not cover extended composition ranges, 
though by now it should be clear that this topic has many 
interesting facets and intriguing problems. Fortunately, 
the development of new experimental techniques for 
vapor-liquid equilibrium measurements in general, and 
as applied to dilute solutions in particular, continues 
unabated. Those potentially interested in constructing 
precision equipment are referred to reviews, for instance, 
by Wilhelm,7) Raal and Ramjugernath,129,130) Richon and 
de Loos,131) Dohnal,132) and Maurer and Pérez-Salado 
Kamps.133) 

As pointed out above (see also refs. (7) and (57)), 
the composition dependence of the activity coefficients 

 HL , ,2 s,1 2T P x  obtained via eq. (41) may be 

represented by any adequate correlating equation. For 
instance, we may use the simple two-suffix Margules 
equation 

   HL 2ln , , 1                 (76)2 s,1 2 1T P x A x   　　　　

where  , s,1A A T P  is a solution-specific parameter. 

Focusing now on dilute solutions at not too high 

pressures, to an excellent approximation  L , ,2 2V T P x  

may be replaced by a pressure-independent partial molar 

volume at infinite dilution,  L ,2 s,1V T P , whence the 

Krichevsky-Ilinskaya equation 

 
 

   

 

LV ,, , s,1 2 s,12 2 2ln
,2 2,1 s,1

2 1             (77)1

P P V T PT P y y P

RTx h T P

A x

      
 
 

 　　　　　　　　　　　 　　

is obtained. At high dilution, the inevitable experimental 
scatter often tends to obscure the composition 
dependence of activity coefficients, and the use of the 

approximation 12
HL  , independent of the 

composition, may be permissible. This yields the 
Krichevsky-Kasarnovsky equation 

 

     

V , ,2 2 2ln
2

L ,s,1 2 s,1
ln ,    (78)2,1 s,1

T P y y P

x

P P V T P
h T P

RT

 
 
  
 


  　　　

Quite often, this equation has been used for the 

determination of L
2V   from gas-solubility 

measurements at elevated pressures: plotting the left-
hand side of eq. (78) against the applied pressure 

s,1P P , the intercept gives the Henry fugacity, and the 

slope gives L
2V  . However, at high pressures, the 

solubility may already be appreciable and hence the 
underlying assumptions too severe. Partial molar 
volumes of gases in liquids at infinite dilution obtained 
this way should always be regarded with caution and 
may be unreliable. 
 Using less sophisticated instruments for 
measurements on dilute solutions at fairly low pressures 
well below the critical temperature Tc,1, the Poynting 
correction may be small compared to the experimental 
imprecision. When neglected, we obtain 

   V , , ,             (79)2 2 2 2 2,1 s,1T P y y P x h T P  　　　

And finally, assuming V 12   (i.e. the vapor phase 

behaves as an ideal-gas mixture) leads to the simplest 
and most familiar equation 

                                  (80)2 2 2 2,1P y P x h  　　　　

which is Henry’ law as known from many introductory 
text books and thermodynamics courses. 
 As already pointed out in connection with the 
definition eq. (18), Henry’s law is a limiting law. The 
composition range over which it is approximately valid 
is known as the “Henry’s law region” Its extent is 
bounded by the experimental imprecision, which in turn 
depends on the method and apparatus selected for the 
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measurements and on the data reduction method used. It 
is expected, of course, to vary with the chemical nature 
of the solute and the solvent.134,135) 
 Starting from the general equilibrium criterion for 
the solvent (cf. also the first term on the right-hand side 

of eq. (43)), at the reference pressure  s,1P T  at mole 

fraction x1 in the liquid phase and y1 in the coexisting 
vapor phase, the pressure-corrected isothermal-isobaric 
liquid-phase activity coefficient for the solvent, which is 
based on the Lewis-Randall rule, is given by 

 

   

s,1

LR , ,1 s,1 1

V L, , , ,1 1 1 1 1= exp d
V

1 s,1 s,1

(81)

P

P

T P x

T P y y P V T P x
P

RTx P







 
     
  
　

　　　　　　　　　　　　　　　　　　　　

A series of approximations may now be applied, quite 
analogous to those applied above to eq. (41). Again, 
when the focus is on solutions at not too high pressures, 

to an excellent approximation  L , ,1 1V T P x  may be 

replaced by its value at s,1P  and assumed to be 

independent of pressure. Thus, 

     

 

LV , ,, , s,1 1 s,1 11 1 1ln
V

1 s,1 s,1

LRln , ,                        (82) 1 s,1 1

P P V T P xT P y y P

RTx P

T P x







  
    
 

　　　　　 　　

For dilute solutions, that is at mole fractions x1 very close 

to 1, the approximation  L L, ,1 s,1 1 1,sV T P x V   may be 

used. Note that the two-suffix Margules equation for the 
solvent reads 

 LR 2ln , ,                            (83)1 s,1 1 2T P x Ax  　　　

 For conventional VLE data reduction at low to 
moderate pressures and comprising the entire 
composition range, usually more complex correlating 
equations for the LR-based activity coefficients are 
needed.6) Two-parameter equations of practical 
importance are, for instance, the two-parameter (three-
suffix) Margules equation, the van Laar equation and the 
Wilson equation. Frequently the Poynting correction 
terms are insignificant compared to the experimental 
imprecision, and may thus be neglected; and at low 
pressures, the fugacity coefficients are usually of order 
unity, whence with the additional assumption that the 
vapor phase behaves ideally, eq. (82) becomes 

LR                                            (84)1 1 1 s,1y P x P 　　

The activity coefficient LR
1  in eq. (84) characterizes 

non-ideal behavior in the liquid solution and depends 
only on composition and temperature. For an ideal 

solution LR 11  , and eq. (84) reduces to Raoult’s law 

                      (85)1 1 1 s,1P y P x P  　　　　　　　

 Once experimental Henry fugacities for a specific 
binary solution have been determined over a reasonably 
large temperature range (but not too close to the critical 
temperature of the solvent, see below), the question 
arises as to their most satisfactory mathematical 
representation as a function of temperature. Depending 
on the choice of variables, that is T or 1/T, for expanding 
the enthalpy of solution, either the Clarke-Glew 
equation136) 

   

   
3

1ln , Pa K2,1 s,1 0 1

2ln K K (86)2

n

i

h T P A A T

iA T A Ti


     

 　　　 　　　

or the Benson-Krause (BK) equation137) 

   
0

ln , Pa K            (87)2,1 s,1

m

i

ih T P a Ti


     
is obtained. On the basis of the ability to fit high-
precision Henry fugacity data over fairly large 
temperature ranges, and of simplicity, the BK power 
series in 1/T appears to be superior.7,70,71,102,126,137)  
 At this juncture I would like to emphasize that the 
frequently found sweeping statement “the solubility of a 
gas in a liquid decreases with increasing temperature” is 
misleading/incorrect when the entire liquid range 
between the triple point and the critical point of the 
solvent is considered. For quite a few systems, the 
following behavior is well documented:6,7,57,123,138) at low 
temperatures starting at the solvent triple point, 

 ,2,1 s,1h T P  typically increases with increasing 

temperature, passes through a maximum, and then 
decreases towards its limiting value at the solvent’s 
critical point as indicatd by eq. (29), that is towards 

 V ,   2 c,1 c,1 c,1T P P  . An example is provided by 

Fig.3, where  ln , GPa2,1 s,1h T P 
  

 for methane 

dissolved in liquid water is plotted against 
temperature.70,123) This system plays an important role in 
discussions of hydrophobicity. While the Henry fugacity 
remains finite at Tc,1, see eq. (29), for volatile solutes the 
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limiting value of the temperature derivative of 

 ln ,2,1 s,1h T P  diverges to −∞:139,140) 

 d ln , Pa2,1 s,1
lim           (88)

d
c,1

c,1

h T P

TT T

P P

 
    





　　

  
 

Fig.3 Plot of  2,1 s,1ln , GPah T P 
   against tempera-

ture T for methane dissolved in liquid water. 

 2,1 s,1,h T P  is the Henry fugacity (Henry’s constant) at 

temperature T and pressure Ps,1(T): 
•, experimental results of Rettich et al.70): the average 
percentage deviation of 2,1h  from the value calculated 

via the correlating BK function, eq. (87), is ca. ±0.05%; 
○, experimental results of Crovetto et al.123): the average 
percentage deviation of 2,1h  from the value calculated 

via the correlating BK function, eq. (87), is ca. ±2%. The 
limiting value of 2,1h  as T→Tc,1 is finite and given by eq. 

(29), the limiting slope of the curve is  −∞, see eq. (88). 
 
 
 During the last 20 years or so, several equations for 
presenting the temperature dependence of the Henry 
fugacity between the triple point temperature and the 
critical temperature of the solvent were developed, the 
main objective being the incorporation of the 
thermodynamically correct limiting behavior indicated 
by eqs. (29) and (88). The solubility-data base 
predominantly comprises aqueous solutions. Here, just a 

few contributions will be presented, and for details I 
refer to ref. (7) and the original literature. Krause and 
Benson126) suggest 

 
   

2 ln , Par,1 2,1 s,1

1 3 2 32 1 1      0 r,1 1 r,1 2 r,1

   (89)

T h T P

b T b T b T

 
  

    　　

　　　　　　　　　　　　　　　　　　　

where r,1 c,1T T T . This correlation shows a 

divergence with a critical exponent close to the expected 
value.112,140-142) Incorporating theoretical results on the 

temperature dependence of  ,2,1 s,1h T P  near the 

critical point of the solvent, the new correlation of 
Harvey138) 

 
   

ln ,2,1 s,1 s,1

0.355 0.411 exp 1  r,1 r,1 r,1 r,1 r,1

(90)

h T P P

A T B T T C T T    

 
 

　　　　　　　　　　　　　　　　　　　　

covers the temperature range from 0 °C to near the 
critical point of water quite satisfactorily, though partial 
molar volumes at infinite dilution derived therefrom are 
overestimated in the critical region.86,87,118,143,144) It is, 
however, not restricted to a specific solvent, and has 
been tested with aqueous solutions as well as with 
several solutions involving hexadecane as solvent. Note 
that the exponent 0.355 represents an “effective” critical 
exponent, as compared to the theoretical value β = 0.326 
± 0.002.112) 

 Until the mid-eighties, high-precision 
measurements of Henry fugacities over temperature 
ranges large enough to permit reliable van’t Hoff-type 
data analysis constituted the only source of information 
on partial molar enthalpy changes on solution 

 ,2 s,1H T P , see eq. (45), and a fortiori on partial 

molar heat capacity changes on solution 

 ,, 2 s,1C T PP
 , see eq. (47). Since the experimental 

Henry fugacities at different temperatures refer to 

different saturation pressures  s,1 s,1P P T , eqs. (45) 

and (47) have to be augmented accordingly, as detailed 
by Wilhelm7,8,57,70,71,73,76,102,145) and in other references. 
For instance, selecting a conventional BK-type fitting 
equation, eq. (87), to represent the temperature 

dependence of the  ,2,1 s,1h T P  data, we obtain 
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 
 

1

L, d2 s,1 s,12K  
d

                                                                          (91)

m

i

H T P PViia TiRT R T


   
 

   
2

,,2 s,1

L dd s,121 K 2     
d d

2 2L Ld ds,1 s,12 2+
2d d

 (92) 

m

i

C T PP

R

PVTii i a Ti R T T

P PV TVT

R P T R T
T






  

            

　　=

　　　　

　　　　　　　　　　　　　　　　　　　　
The additional terms on the right side of the summation 

terms in eqs. (91) and (92), containing L
2V   and its 

derivatives with respect to T and P and so forth, are 
referred to in the literature126,146) as Wilhelm terms. For 
aqueous solutions, say, of the rare gases below 100 °C, 
their contributions are small,126) usually smaller than the 
experimental error associated with current precision 
measurements. 
 As discussed above, see eqs. (71) and (72), the 
partial molar volume of a volatile solute at infinite 
dilution in a liquid solvent diverges to + ∞ at the critical 
point of the solvent, and so will the partial molar 

enthalpy at infinite dilution, L
2H  . Its limiting behavior 

near the solvent’s critical point is given by110,112,113) 

L L L L
2 Kr, ,2 2

L L ,    as 0,             (93)Kr 2, 2

H TV A
T x V x

TV A x
P x

 





 



　　　 　　　

where L
, 2V x

  is the isochoric thermal pressure 

coefficient of the dilute solution with mole fraction x2, 

and L
, 2P x

  is its isobaric expansivity. The isochoric 

thermal pressure coefficient V P T    remains 

finite at the critical point. Again, the Krichevsky 
parameter, in conjunction with the indicated solvent 
properties (molar volume, compressibility or 
expansivity), governs the near-critical divergence 
behavior of the partial molar enthalpy at infinite dilution. 
The partial molar isobaric heat capacity at infinite 

dilution,  L L
,2 2C H TP P
    , diverges in a more 

complex manner and much stronger110,112,148-150) than 

either L
2V   or L

2H  . In fact, the experimental results 

on the apparent molar heat capacities of aqueous argon, 
xenon, methane and eth 
ene obtained by Wood’s group148-150) all show a quite 
similar, remarkable behavior: for pressures of about 28 
MPa, the apparent molar heat capacity 

1 1J K mol,2,appCP
    of, say, methane150) 

initially decreases with increasing temperature from ca. 
245 at 298.15 K to a minimum value of 194 at ca. 450 K, 
then increases to a very sharp maximum value of more 
than +20 000 at about 663 K, then decreases to a very 
sharp minimum value below −20 000 at about 670 K, to 
reach −1035 at 703.8 K, the upper limit of the 
experimental temperatur range. In a binary solution, the 

apparent molar quantity 2,appM  of solute 2 dissolved 

in solvent 1 is defined by 

1 1                          (94)2,app
2

nM n M
M

n


 　　　　

where the molar quantity referring to the solution is M , 

1M  is the molar quantity referring to the pure solvent, 

and n1 and n2 are the amounts of substance of solvent and 

solute, respectively. Evidently, with 2M  denoting a 

partial molar quantity of the solute, 

2,app
             (95)2 2,app 2

2 ,

M
M M n

n
T P

 
  
  

　　

and for 02n  , i.e. at infinite dilution, 

2,app 2M M . 

 The maximum and the minimum of ,2CP
  vs. T in 

the critical region can be predicted from Wheeler’s 
lattice gas model.107) The partial molar isobaric heat 

capacity ,2CP
  at the critical pressure Pc,1 will exhibit a 

discontinuity at Tc,1 , that is to say ,2CP
  will go to 

positive infinity if Tc,1 is approached from lower 
temperatures T < Tc,1, and to negative infinity if Tc,1 is 
approached from higher temperatures T > Tc,1. At P > 

Pc,1, the curve ,2CP
  vs. T is continuous. For the 

nonvolatile solute boric acid,151) 

1 1J K mol,2,appCP
    of H3BO3(aq) shows, as 

expected, an opposite temperature dependence: in the 
critical region, a sharp minimum comes first (below Tc,1), 
which is then followed by a sharp maximum (above Tc,1). 
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Note that in contrast to the gaseous solutes, in the 
neighborhood of the critical point of water, the apparent 
molar volume of H3BO3(aq) exhibits a sharp minimum: 
at P = 28 MPa and ca. 666 K, the concentration-

corrected L
2V   amounts to -800 cm3·mol−1. 

 Undoubtedly, heat capacities are highly important 
thermophysical quantities from both a practical and a 
theoretical point of view.27,152-154) Since the heat capacity 
at constant pressure is related to the second derivative of 
the Gibbs energy with respect to temperature, 

 2 2                          (96)C T G TP P
    　　　　　

it is a particularly sensitive property to be used (I) for 
comparing different methods of data treatment, and (II) 
for model evaluation and improvement by comparing 
experimental data with theoretical results.  
 Direct calorimetric determinations of the high-
dilution partial molar enthalpy change on solution of a 

gas in a liquid,  ,2 s,1H T P , have been carried out 

by only a very limited number of researchers,155-165) 
essentially because of the experimental difficulties 
associated with accurately measuring very small heat 
effects in very dilute solutions (typically, mole fraction 
solubilities at ambient temperatures and 0.1 MPa gas 
pressure are about 10−4 to 10−5). The micro-calorimeters 
used were developed155,156) in the Thermochemistry 
Laboratory of the University of Lund, Sweden, and in the 
Chemistry Department of the University of Colorado in 
Boulder, CO, USA, respectively. A fortiori, because of 
the formidable experimental difficulties encountered in 
the case of direct measurements of heat capacities of 
gases dissolved in water at very low concentration, there 
exist only seven sets of such data, all originating from the 
laboratory of R. H. Wood at the University of Delaware 
in Newark, DE, USA. Wood and collaborators 
determined the apparent molar heat capacities at low 
concentrations of four inert solutes in water: of aqueous 
argon,148,149) xenon,149) methane150) and ethene;149) and of 
aqueous CO2, H2S and NH3.

150) The sophistically 
constructed flow calorimeters may be used over very 
large temperature ranges well into the supercritical 
region up to T ≈ 720 K. Although these calorimetric 
measurements were all performed at elevated pressures 
between, roughly, 17 MPa and 32 MPa, the mole 
fractions of the dissolved gases are small enough to make 
the apparent molar heat capacities to a good 
approximation equal to the partial molar heat capacities 

at infinite dilution,  ,,2C T PP
 , within experimental 

error (at temperatures below ca. 500 K). At temperatures 

well below Tc,1,    L L, ,,2 , 2 s,1C T P C T PP P
   is a 

reasonable approximation, and subtraction of the molar 
isobaric heat capacity of the pure solute in the perfect gas 
state166) yields the partial molar heat capacity change on 
solution (see above): 

   

 

pgL ,,2 s,1 ,2

,    (97),2 s,1

C T P C TP P

C T PP

 

 

　

　　　　　 　　　　　　　　

This quantity may be compared to results obtained by 
van’t Hoff analysis of high-precision solubility data, for 
instance via eq. (92). Clearly, much more experimental 
calorimetric work on simple aqueous solutions at high 
dilution would be desirable. 
 When measured over a sufficiently large 
temperature range, calorimetry-based results on 

 ,2 s,1H T P  may in turn be used to obtain 

 ,, 2 s,1C T PP
  according to 

   d ,2 s,1
,,2 s,1 d

L d s,1L 2         (98)2 d

H T P
C T PP T

PV
V T

T T
P

 

        
   

　　　　 　　

In the temperature regions investigated so far, the second 
term on the right-hand side of eq. (98) is much smaller 
than the experimental imprecision, whence the 
approximate relation 

   d ,2 s,1
,              (99),2 s,1 d

H T P
C T PP T

  　　　　

is entirely satisfactory. It was used by the group in 
Boulder as well as by the group in Lund. 
 The large partial molar heat capacity changes 

 ,, 2 s,1C T PP
  observed when nonpolar molecules 

are dissolved in water at ambient temperature are widely 
regarded as the signature of hydrophobicity, and have 
frequently been connected with some unspecified 
ordering of the water molecules around the solute 
(exemplified by the famous “iceberg model” of Frank 
and Evans167)). The picture that emerges from structural 
studies, using the method of neutron diffraction and 
isotopic substitution, on aqueous solutions of methane168) 
is the following: the solute is surrounded by a relatively 
strong first coordination shell containing about 19 water 
molecules which are oriented tangentially to the CH4 
molecule, with no evidence of a second coordination 
shell. There is reasonably good agreement between these 
observations and those deduced from theoretical model 
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calculations and computer simulations,169) though the 
interaction between the apolar molecules and water 
appears to be much shorter-ranged than suggested by the 
model calculations. Neutron diffraction experiments 
have also been reported for the prototypical hydrophobe 
argon dissolved in water170-172), including measurements 
at elevated pressures and supercritical conditions. A 
thorough investigation of the hydrophobic hydration of 
krypton in liquid water via EXAFS (extended X-ray 
absorption fine structure) spectroscopy over extended 
temperature and pressure ranges (up to 70 MPa), 
including a comparison with the solid clathrate173) 
structure, is due to Bowron et al.174-177) The coordination 
number of krypton in water is significantly different from 
that in the solid Kr/H2O clathrate phase, a result which is 
critically discussed and compared to ab initio molecular 
dynamics results by Ashbaugh et al.178) and by 
LaViolette et al.179) In particular, they point out that the 
revised scaled particle model180,181) is the most successful 
theory of hydrophobicity for spherical solutes because it 
incorporates experimental information without 
postulating a clathrate structure. The simpler SPT 
version of Pierotti,95,182) as applied by Wilhelm and 
Battino in 1972,98) already indicates clearly that the 
partial molar entropy of cavity formation in water, 

cav,2S , places water apart from all the other solvents 

studied: at ambient temperatures, (I) cav,2S  is much 

more negative in water for all solute hard sphere 

diameters 2  considered97) (2.63×10−8 cm (He) to 

5.51×10−8 cm (SF6)), and (II) d dcav,2 2S   is much 

more negative in water than in other solvents. The view, 
that the loss of entropy associated with the accomodation 
of a small hydrophobe in liquid water is a consequence 
of creating an appropriate cavity rather than the result of 
creating ordered clathrate-like structures, is strongly 
supported by a recent neutron diffraction study of a 
methane-water solution,183) and by molecular dynamics 
simulations of aqueous solutions of various hydrophobes 
over a wide concentration range.184) At small solute 
concentrations, in the vicinity of the solute, only a 
moderate water reorientational slowdown (compared to 
bulk water) is found: the factor is below 2, in accord with 
NMR experiments,185,186) and no dynamic “icebergs” are 
formed. Nevertheless, despite substantial progress in this 
field, many issues remain unresolved and/or 
controversial, and, of course, new viewpoints emerge. 
Some are related to the pure solvent itself, while some 
are related to the ways solutes (small and large, 
hydrophobes and hydrophiles, proteins, etc.) interact 
with liquid water.24,53,187-201) 

 Comparing high-precision calorimetric results for 

 ,2 s,1H T P  and  ,, 2 s,1C T PP
  with van’t Hoff-

derived enthalpy changes on solution and heat capacity 
changes on solution, which are obtained by 

differentiating 2,1ln h  once or twice, respectively, with 

respect to temperature, constitutes a severe quality test of 
solubility data. Recently, Wilhelm7,73) and Wilhelm and 
Battino145) presented comprehensive compilations as well 
as such comparisons, at T = 298.15 K and Ps,1(298.15 K) 
= 3.1691 kPa, for many gases dissolved in liquid water 
(in a few instances the solutes were, in fact, subcritical 
vapors). In nearly all cases, agreement between these two 
approaches was entirely satisfactory, i.e. it was usually 
within the combined experimental errors. What a credit 
to experimental ingenuity and to the skills of solution 
thermodynamicists! 
 

Concluding Remarks and Outlook 
 
Chemical thermodynamics of solutions in general, and of 
aqueous solutions in particular, continue to be exciting, 
developing fields which, combined with advances in the 
statistical-mechanical treatment of solutions and 
increasingly sophisticated computer simulations, provide 
new insights and stimulating connections at the 
microscopic, mesoscopic and macroscopic level. The 
major driving forces for progress in 
instrumentation7,57,202,203) are the desire to increase the 
applicability area (larger temperature and pressure ranges, 
ever smaller concentrations, etc.), to increase precision 
and accuracy, to improve on the speed of measurements, 
and to facilitate application and data transfer. In this 
review, I have tried first to concisely present the 
thermodynamic formalism relevant for the study of dilute 
liquid solutions of nonelectrolytes, and second, to cover 
the most important aspects of its practical 
implementation, indicating areas where more and/or 
more detailed experimental work would be desirable. 
Throughout, the emphasis was on aqueous solutions of 
supercritical solutes. In particular, three closely related 
areas have been dealt with prominently: 

 discussion of solution behavior in terms of the Henry 

fugacity  ,2,1h T P  (also known as Henry’s law 

constant) and related quantities, such as activity 
coefficients and fugacity coefficients, and exposing 
some frequently encountered misconceptions; 

 reporting on the equivalency of results for caloric 

quantities (e.g. 2H  and ,2CP
 ) derived from 

solubility measurements via van’t Hoff analysis with 
those measured directly with calorimeters; 
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 indication of the most important ramifications of 
solubility-related topics into neighboring fields of 
science, in particular into biophysical chemistry. 

The first two essentially present the state of the art 
to the (potential) experimentalist, pointing out 
unresolved questions and missing experimental data 
useful for further progress. The third area simply reflects 

my conviction that crossdisciplinary fundamental 
research has always been a potent stimulus for advances 
in science as well as in technological innovation. This is 
particularly true for research on the solubility of gases in 
liquid water, which topic has greatly contributed to our 
understanding and appreciation of hydrophobic effects, 
which are thought to play an important role in biology. 

Fig.4 The sphere of knowledge suspended in the universe of non-knowledge (symbolized here by ¬knowledge), 
according to J. Mittelstraß,205) who was stimulated by ideas expressed by Blaise Pascal (1623, Clermont  – 1662, 
Paris).  
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Note, however, that in biochemical processes, such as 
protein folding and protein-protein interaction, 
hydrophilic effects may be more important than 
hydrophobic effects.199-201) A rich research field lies 
ahead, and the increasing number of investigations with a 
strong biophysical and/or biomedical flavor is thus not 
surprising. 
 Studies on solubility in general, and on solubility in 
water, have come a long way. The field has grown too 
big to be covered in a modest review article, but for the 
subsections treated above I hope to have succeeded in 
providing a feeling for their scope and potential. Related 
to this practical aspect is a fundamental philosophical 
question: Is there an end to the age of scientific 
discovery? Russell Stannard204) answers in the 
affirmative (essentially based on practical 
considerations). A somewhat different position is 
advocated by Jürgen Mittelstraß. One of the recent 
Austrian Science Discussions (Österreichische 
Wissenschaftstage), organized by the Österreichische 
Forschungsgemeinschaft, was devoted to the quite 
general topic of Image and Reality in Science (Virtualität 
und Realität. Bild und Wirklichkeit in den 
Naturwissenschaften). Of particular relevance for the 
question raised above is the seminal contribution of 
Jürgen Mittelstraß, Thinking the Unthinkable, where he 
discussed the so-called sphere of knowledge suspended 
in a universe of non-knowledge, see Fig.4. This concept 
is based on the fact that with every scientific problem 
solved, new problems emerge. Though scientific 
research continuosly exposes us to more and more non-
knowledge, which is proportional to the sphere’s surface, 
the research-generated knowledge, optimistically 
represented by the sphere’s volume, grows faster. 
According to Mittelstraß, independent of the 
interpretation selected, there are no limits to scientific 
discovery. 
 Whatever the arguments, I find the statement by 
Gilbert Newton Lewis (1875–1946) on the practical 
philosophy of science most appropriate: 

The scientist is a practical man and his are 
practical aims. He does not seek the ultimate but 
the proximate. He does not speak of the last 
analysis but rather of the next approximation....On 
the whole, he is satisfied with his work, for while 
science may never be wholly right it certainly is 
never wholly wrong; and it seems to be improving 
from decade to decade. 
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