

# コラーゲンの三本鎖構造の熱安定性に及ぼす水和の効果

西 義則, 内山 進, 小林祐次

(受取日:2007年6月30日,受理日:2007年7月26日)

## Effect of Hydration on the Thermal Stability of the Collagen Triple Helical Structure

Yoshinori Nishi, Susumu Uchiyama, and Yuji Kobayashi

(Received June 30, 2007; Accepted July 26, 2007)

4(R)-Hydroxyproline (Hyp<sup>*R*</sup>) is often found in natural collagen in spite of being a rare amino acid in proteins overall. It has been known that Hyp<sup>*R*</sup> residue contributes to the thermal stability of the collagen triple helical structure. Intensive studies to investigate the stabilizing mechanism of the collagen triple helical structure have been performed by using a series of polytripeptides (X-Y-Gly)<sub>10</sub> [X, Y: Pro, Hyp<sup>*R*</sup>, or 4-fluoroproline (fPro)]. The thermodynamic parameters determined by DSC analyses of these model peptides indicate that the enthalpy term contributes predominantly to the thermal stability of (Pro-Hyp<sup>*R*</sup>-Gly)<sub>10</sub>, whereas the entropy term is primarily responsible for the enhanced stabilities of (Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub> and (fPro<sup>*S*</sup>-Pro-Gly)<sub>10</sub>. Based on the comparison of molecular volumes observed in solution with intrinsic ones from the crystal structure, the difference comes from the difference of hydration on these peptides.

Keywords: collagen, triple helical structure, thermal stability, hydration

#### 1. はじめに

コラーゲンは動物界において最も多く含まれる蛋白質で あり,皮膚や骨などを構成する。コラーゲンは,三本のペ プチド鎖から構成され,各々のペプチド鎖は,左巻きのら せんを巻き,それらが綱のようによりあって右巻きらせん を形成する。この特異的な三本鎖構造はコラーゲントリプ ルヘリックスと呼ばれ,その熱安定性が生体組織の維持に 重要であると考えられている。コラーゲンには他の蛋白質 ではほとんど存在しないヒドロキシプロリンが構成アミノ 酸として含まれており,その含有量と生育温度との間には 比例関係が見られることから,ヒドロキシプロリンはコラ ーゲンの三本鎖構造の熱安定性に重要な役割を果たしてい ると考えられてきた。これまで過去40年間にわたって、コ ラーゲンの三本鎖構造の熱安定性を説明する試みが盛んに 行われたが、幾つかの仮説が提唱されたものの結論には至 っていない。そこで筆者らはヒドロキシプロリン及びヒド ロキシプロリンの水酸基をフッ素原子に置換したフルオロ プロリンを含むモデルペプチドを合成して熱測定を行い、 定量的にコラーゲンの三本鎖構造の熱安定性を解析した。 その結果、ヒドロキシプロリン、フルオロプロリンともに 熱安定性を増す働きがあるものの、両者の安定化機構は熱 力学的に大きく異なることを見出し、その要因はペプチド と溶媒との相互作用(水溶液中においては水和)の違いに

© 2007 The Japan Society of Calorimetry and Thermal Analysis. 152 Netsu Sokutei 34 (4) 2007 よって生じることを部分モル体積測定により明らかにした。 本解説では、コラーゲンの三本鎖構造の熱安定性の研究の 歴史を紹介すると共に、最近の熱力学的な解析によって得 られた安定化機構に関する新しい知見を述べる。

### 2. 溶液内で三本鎖構造を形成するコラーゲンモデル ペプチドの発見

昭和40年代。筆者の一人である小林が所属していた大阪 大学蛋白質研究所では、大学や民間会社の研究所などから 持ち込まれるサンプルの超遠心分析の測定サービスが行わ れており、小林もその解析の手伝いをしていた。そのよう な中, 当時蛋白質研究所のペプチドセンターの榊原より興 味ある分析の依頼を受けた。当時はMerrifieldによってペ プチド固相合成法が発表されてい間もない頃であり、 榊原 はペプチド固相合成の過程で必要な樹脂からのペプチドの 切断と保護基の除去の操作を同時にフッ化水素を用いて行 う手法を開発していた。2) 固相法は従来の液相法とは異なり, 中間体の単離や精製の操作が無く, 簡便で短時間で行える が、少しでも不完全な反応箇所があると樹脂上に欠損物が 残るため、最終生成物の精製が困難になる。この問題を解 決するため、アミノ酸単位ではなく、フラグメント単位で **固相法を行うことが考えられた。アミノ酸単位での重合に** おいて一残基抜けると平均的に分子量が100小さくなるが、 例えばトリペプチド単位の場合には300程度小さくなるの で、目的物と欠損物の分子量の差が大きくなり、精製が容 易になることが期待される。そこで榊原はこの方法の有用 性を示すため、血圧降下作用を有する9残基の生理活性ペ プチドBradykinin<sup>3,4)</sup>に含まれる配列Pro-Pro-Gly を有する トリペプチドを原材料として重合した (Pro-Pro-Gly)10と (Pro-Pro-Gly)20の分子量分布がどの程度かを超遠心で確か めてほしいと小林に依頼したのである。ところが、得られ た分子量は小さくなるどころか、実験条件によっては予想 値の2倍近くになった。この実験結果の解釈を考えていた ところ、3残基毎にGlyが来るアミノ酸配列はコラーゲン に特有なこと、 コラーゲンにはイミノ酸含量が高いこと、 さらに分子量が2倍近くになることから、ひょっとしたら 三本鎖を形成しているのではないかとのアイデアが頭に浮 かんだ。幸運にも小林はコラーゲンの構造転移をやってい たので、 早速 (Pro-Pro-Gly)20の旋光度の温度依存性を測 定した。その結果、予想通りシグモイド状の転移曲線が得 られた。5) こうなれば何としてでも分子量的に三本鎖の存在 を証明する必要がある。そこで小林は榊原に (Pro-Pro-Gly)n (n=10, 15, 20) の合成を依頼し、さまざまな温 度でこれらのペプチドの超遠心分析を行い、転移温度の重 合度依存性を確かめることにした。低温や高温での測定は 非常に苦労したが、Fig.1に示すように初めて分子量で三



**Fig.1** Temperature dependence of apparent molecular weight of (Pro-Pro-Gly)<sub>10</sub>.



**Fig.2** Structure of 4(R)-hydroxyproline (Hyp<sup>*R*</sup>).

本鎖から一本鎖の転移を示すことができた。<sup>6)</sup> (Pro-Pro-Gly)<sub>10</sub>は現在もコラーゲンモデルペプチドのスタンダード として広く引用されている。

## コラーゲンに存在するユニークなアミノ酸 「ヒドロキシプロリン」

コラーゲンの三本鎖構造に特徴的なX-Y-Glyのトリプレ ットの繰り返し配列において,XとYの位置はそれぞれ主 にイミノ酸であるプロリン (Pro) や4-ヒドロキシプロリ ン (Hyp) が占める。HypはFig.2に示すように,Proの 4位に水酸基を1個持った構造をしており,酵素プロリル 4-ヒドロキシラーゼによるProのヒドロキシ化反応によっ て生じる。また,4-ヒドロキシプロリンには4(R)-ヒドロ キシプロリン (Hyp<sup>R</sup>) と4(S)-ヒドロキシプロリン (Hyp<sup>S</sup>) の2種類が考えられるが,自然界には前者のみが存在し, 生育温度が高い動物のコラーゲンほどHyp<sup>R</sup>の含有率が高い 傾向がある。<sup>7)</sup> そこで,Hyp<sup>R</sup>の働きを詳しく調べるために, 前章で述べた化学合成ペプチド (Pro-Pro-Gly)10のY位の ProをHyp<sup>R</sup>に置換した (Pro-Hyp<sup>R</sup>-Gly)10が合成された。<sup>8)</sup> その結果, (Pro-Hyp<sup>R</sup>-Gly)10の三本鎖から一本鎖への転移 温度は (Pro-Pro-Gly)10より約30で高い60でであり,<sup>8)</sup> 天然 のコラーゲンと同様に, Hyp<sup>R</sup>が三本鎖構造を安定化するこ とが示された。この要因としてHyp<sup>R</sup>の水酸基が水素結合 の形成に関与することが考えられた。ところが, Hyp<sup>R</sup>の ジアステレオマーであるHyp<sup>S</sup>を含むモデルペプチドである (Pro-Hyp<sup>S</sup>-Gly)10や (Hyp<sup>S</sup>-Pro-Gly)10は4℃でも三本鎖構 造を形成しないほか,<sup>9)</sup> 天然とは異なるX位にHyp<sup>R</sup>を含む モデルペプチドである (Hyp<sup>R</sup>-Pro-Gly)10も4℃では三本鎖 を形成せずに一本鎖として存在すること,<sup>10)</sup>さらには非水 溶媒中での (Pro-Pro-Gly)10や (Pro-Hyp<sup>R</sup>-Gly)10の三本鎖 構造の熱安定性は水溶液中より増すこと<sup>11)</sup>が報告され,水 素結合がコラーゲンの三本鎖構造を安定化するという説に 疑問を抱く研究者が現れた。その中の一人がアメリカ人研 究者のBaines である。

#### 4. フルオロプロリンを含むモデルペプチドの登場

Raines らは、水酸基の酸素原子は電気陰性度が高いこと に注目し、Hyp<sup>R</sup>の水酸基を電気陰性度が最も高いフッ素原 子に置換した4(R)-fluoroproline (fPro<sup>R</sup>)をYの位置に含む (Pro-fPro<sup>R</sup>-Gly)<sub>10</sub>を合成し、熱安定性を調べた。その結果、 (Pro-fPro<sup>R</sup>-Gly)<sub>10</sub>の転移温度は (Pro-Hyp<sup>R</sup>-Gly)<sub>10</sub>よりさら に高くなることが示された。fPro は弱い水素結合しか形成 しないことから、彼らはコラーゲンの三本鎖構造の安定化 には水素結合ではなく、4位の置換基の電気陰性度が重要 であるとする説を提唱した。<sup>12,13</sup>後に、彼らはfPro<sup>R</sup>のジ アステレオマーであるfPro<sup>S</sup> EY 位に含む (Pro-fPro<sup>S</sup>-Gly)<sub>10</sub> は4℃では三本鎖を形成しないことを示した。<sup>14</sup>

## 5. ピロリジン環のパッカリングに着目した 安定化機構仮説

このように、Hyp, fPro はともに三本鎖構造の熱安定性 を増す働きがあるが、立体異性や配列上の位置によっては 大きく低下する。この実験事実に対して、X線結晶解析を 専門とするZagariらは、コラーゲンモデルペプチドの結晶 構造解析より、 三本鎖構造の熱安定性にはピロリジン環の パッカリングの方向が関与することを提唱した。15) Proは 両方のパッカリング(up またはdown) をとることができ るが、水酸基やフッ素原子といった電気陰性の置換基によ る立体電子的効果によってHypやfProのピロリジン環のパ ッカリングの方向は偏ることが知られており、4位の立体 異性がRのものはup, Sのものはdownのパッカリングが 安定である。16) また,モデルペプチドのX線解析より,三 本鎖構造においてXの位置はdown, Yの位置はupのパッ カリングであることが確かめられている。15,17-20) よって、 彼らは「Xの位置にはdownのパッカリング、Yの位置に はupのパッカリングを採用できるものが挿入されたときの



**Fig.3** A proposed model of the conformation of the pyrrolidine ring desirable for stabilizing the triple helix by Zagari and co-workers.<sup>15)</sup>

みに三本鎖構造を形成することができる」と考えた。その 概要を**Fig.3**に示す。この法則に従えば (Hyp<sup>s</sup>-Pro-Gly)<sub>10</sub> は三本鎖構造を形成するはずだが,上述したように既に筆 者らは三本鎖構造を形成しないことを報告していた<sup>90</sup>ので, 彼らはHyp<sup>s</sup>の水酸基が隣のペプチド鎖のピロリジン環と立 体障害が生じるための例外であると説明した。

## 6. X 位にfPro を含むコラーゲンモデル ペプチドの合成と物性解析

水酸基の酸素原子とフッ素原子のファンデルワールス半 径はそれぞれ1.57, 1.47 Aであり, ほぼ同じであることか ら、(fPro<sup>s</sup>-Pro-Gly)10は(Hyp<sup>s</sup>-Pro-Gly)10と同様に三本鎖 を形成しないと予想できる。この予想が正しいかどうかを 確かめるために、筆者らは天然に存在する Hyp<sup>R</sup>を出発物 質として非天然アミノ酸fPro が高収率で得られる方法を開 発し、21) 固相法により (fProR-Pro-Gly)10と (fProS-Pro-Gly)10を合成し、CDや超遠心によりそれらの物性を測定 した。その結果、(fPro<sup>R</sup>-Pro-Gly)10は予想通り三本鎖を形 成しなかったが、(fPro<sup>s</sup>-Pro-Gly)10は予想に反して温度上 昇に伴って三本鎖から一本鎖へと転移し、その転移温度は 58℃であることが分かった。22) この結果と既知のモデルペ プチドの三本鎖構造の熱安定性をTable 1に記す。このこ とから、Zagariらの説のようにパッカリングのみで三本鎖 構造の熱安定性を説明するのは困難であり、定量的に熱安 定性を解析する必要があると考えた。そこで、示差走査型 熱量計(DSC) を用いてコラーゲンモデルペプチドの転移 に伴う熱力学量を求めることとした。

## 7. DSC によるコラーゲンモデルペプチドの 転移に伴う熱力学量の決定

DSC 測定は、三本鎖から一本鎖への転移が存在する

| peptide                  | structure <sup>a</sup> | $T_{1/2}^{b}/^{\circ}\mathbb{C}$ | ref | peptide                                    | structure <sup>a</sup> | $T_{1/2}^{b}/^{\circ}\mathbb{C}$ | ref |
|--------------------------|------------------------|----------------------------------|-----|--------------------------------------------|------------------------|----------------------------------|-----|
| (Pro-Pro-Gly)10          | t                      | 34                               | 5   |                                            |                        |                                  |     |
| $(Pro-Hyp^{R}-Gly)_{10}$ | t                      | 61                               | 8   | $(Pro-fPro^{R}-Gly)_{10}$                  | t                      | 80                               | 12  |
| $(Pro-Hyp^{S}-Gly)_{10}$ | 8                      | <4                               | 9   | (Pro-fPro <sup>s</sup> -Gly) <sub>10</sub> | S                      | <2                               | 14  |
| $(Hyp^{R}-Pro-Gly)_{10}$ | s                      | <4                               | 10  | $(fPro^{R}-Pro-Gly)_{10}$                  | S                      | <4                               | 22  |
| $(Hyp^{s}-Pro-Gly)_{10}$ | s                      | < 4                              | 9   | (fPro <sup>s</sup> -Pro-Gly) <sub>10</sub> | t                      | 58                               | 22  |

Table 1 Summary of the structures of collagen model peptides.

<sup>*a*</sup> At 4 °C;  $\mathbf{t} = \text{triple helix}$ ,  $\mathbf{s} = \text{single chain}$ .

<sup>b</sup>  $T_{1/2}$  is defined as the temperature where the transition is half-completed.



Fig.4 Molar heat capacity curves of (a) (Pro-Pro-Gly)<sub>10</sub>,
(b) (Pro-Hyp<sup>*R*</sup>-Gly)<sub>10</sub>, (c) (Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>, and
(d) (fPro<sup>*S*</sup>-Pro-Gly)<sub>10</sub> as a function of the temperature.

(Pro-Pro-Gly)<sub>10</sub>, (Pro-Hyp<sup>*R*</sup>-Gly)<sub>10</sub>, (Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>及び(fPro<sup>*S*</sup>-Pro-Gly)<sub>10</sub>について行った。測定にはMicrocal社のVP-DSCを用いた。三本鎖と一本鎖の間の平衡を完全にするために、ペプチド溶液を90℃(ただし(Pro-Pro-Gly)<sub>10</sub>は60℃)に1時間加熱した後、室温まで放冷し、4℃で3日間放置した後に測定を行った。DSC測定は昇温速度0.1 K min<sup>-1</sup>で行った。<sup>23,24</sup>) Fig.4 は各モデルペプチドのDSC 曲線である。

DSC 曲線の解析は以下のように行った。三本鎖をt,一本鎖をsとすると,三本鎖と一本鎖の平衡(式(1))においては,平衡定数Kは式(2)のように表せる。

$$t_3 \rightleftharpoons 3s$$
 (1)

$$K = \frac{[s]^3}{[t_3]} \tag{2}$$

平衡定数KとGibbs自由エネルギー変化量 $\Delta G$ の間には式

(3)の関係があり、 $\Delta G$ はエンタルピー変化量 $\Delta H$ 、定圧モル比熱の変化量 $\Delta C_p$ とエントロピー変化量 $\Delta S$ を用いると式(4)のように記述できる。

$$K = \exp\left(-\frac{\Delta G}{RT}\right) \tag{3}$$

 $\Delta G =$ 

$$\Delta H (T_{\rm m}) + \Delta C_{\rm p} (T - T_{\rm m}) - T [\Delta S (T_{\rm m}) + \Delta C_{\rm p} \ln (\frac{T}{T_{\rm m}})]$$

$$(4)$$

ここで $T_{\rm m}$ は $\Delta G = 0$ となる絶対温度である。

**Table 2**に各モデルペプチドの転移に伴う熱力学量を示 す。ここで,  $T_m$ \*は (Pro-Pro-Gly)<sub>10</sub>における $T_m$ であり,  $\Delta \Delta H$ ,  $\Delta \Delta S$ はそれぞれ (Pro-Pro-Gly)<sub>10</sub>の $\Delta H \geq \Delta S$ の差で ある。これによると, (Pro-Hyp<sup>*R*</sup>-Gly)<sub>10</sub>は (Pro-Pro-Gly)<sub>10</sub> に比べて $\Delta H \geq \Delta S$ がともに値が大きくなっていたのに対し, (Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>及び (fPro<sup>*S*</sup>-Pro-Gly)<sub>10</sub>は $\Delta H \geq \Delta S$ がと もに小さくなっていた。これは, Hyp とfProでは三本鎖構 造の安定化機構が異なることを表している。これらの熱力 学量を解釈するために, 筆者らはモデルペプチドと溶媒と の相互作用に着目した。

## 8. コラーゲンモデルペプチドの部分モル体積の 測定と熱力学量の解釈

ある物質1モルを溶媒に溶解させたときに増加する体積 は部分モル体積と呼ばれ,通常はその物質単独の体積とは 異なる。これは,溶質分子と溶媒分子との間に分子間力が 存在するためである。溶媒和が存在すると部分モル体積は 小さくなる一方,モデルペプチド分子と水分子の間に斥力 が働く場合は部分モル体積が大きくなる。溶質1グラムが 占める体積は部分比容 vと呼ばれ,溶質の濃度 c と溶液の 密度 $\rho$  との間には式(5)のような関係がある。

$$\left(\frac{\partial \dot{\rho}}{\partial d}\right)_{m,p} = 1 - \bar{\nu} \rho_0 \tag{5}$$

| peptide                   | $T_{1/2}{}^a$<br>/ °C | $T_{\mathrm{m}}{}^{b}$ / °C | $\Delta H(T_{\rm m}^*)^c$<br>/ kJ mol <sup>-1</sup> | $-T_{\rm m}^*\Delta S(T_{\rm m}^*)^c$<br>/ kJ mol <sup>-1</sup> | $\Delta\Delta H(T_{\rm m}^*)^d$ / kJ mol <sup>-1</sup> | $-T_{\rm m}^*\Delta\Delta S(T_{\rm m}^*)^d$<br>/ kJ mol <sup>-1</sup> |
|---------------------------|-----------------------|-----------------------------|-----------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------|
| (Pro-Pro-Gly)10           | 31.4                  | 71.9                        | 108.1                                               | -108.1                                                          | 0                                                      | 0                                                                     |
| $(Pro-Hyp^{R}-Gly)_{10}$  | 62.2                  | 92.3                        | 147.1                                               | -138.8                                                          | 39.0                                                   | -30.7                                                                 |
| $(Pro-fPro^{R}-Gly)_{10}$ | 77.0                  | 126.7                       | 85.7                                                | -72.0                                                           | -22.4                                                  | 36.1                                                                  |
| $(fPro^{S}-Pro-Gly)_{10}$ | 54.5                  | 116.7                       | 65.9                                                | -58.0                                                           | -42.2                                                  | 50.1                                                                  |

Table 2 Thermodynamic parameters of the transition of collagen model peptides.

 $^{a}T_{1/2}$  is the temperature where the transition is half-completed.

 $^{b}$  T<sub>m</sub> is the temperature where Gibbs free-energy change associated with the transition ( $\Delta G$ ) equals zero.

<sup>*c*</sup>  $T_m^*$  is the  $T_m$  of (Pro-Pro-Gly)<sub>10</sub>.

 $^{d}\Delta\Delta H(T_{m}^{*})$  and  $\Delta\Delta S(T_{m}^{*})$  are estimated by subtracting  $\Delta H(T_{m}^{*})$  and  $\Delta S(T_{m}^{*})$  for (Pro-Pro-Gly)<sub>10</sub> from those for each peptide, respectively.

**Table 3** Observed partial specific ( $\overline{v}$ ), observed partial molar ( $\overline{V}_{obs}$ ), calculated ( $V_{calc}$ ), and hydration volumes ( $V_{hyd}$ ) of the triple helical collagen model peptides at 10 °C.

| peptide                                                 | $\overline{v}$ / cm <sup>3</sup> g $^{-1}$ | $\overline{V}_{ m obs}$ / cm <sup>3</sup> mol $^{-1}$ a | $V_{\rm calc}$ / cm <sup>3</sup> mol <sup>-1</sup> a | $V_{ m hyd}$ / cm <sup>3</sup> mol $^{-1}$ a |
|---------------------------------------------------------|--------------------------------------------|---------------------------------------------------------|------------------------------------------------------|----------------------------------------------|
| $(Pro-Pro-Gly)_{10}$                                    | 0.6692                                     | 169.4                                                   | 179.0                                                | -9.6                                         |
| $(Pro-Hyp^{R}-Gly)_{10}$                                | 0.6120                                     | 164.7                                                   | 183.3                                                | -18.6                                        |
| $(\operatorname{Pro-fPro}^{R}-\operatorname{Gly})_{10}$ | 0.7337                                     | 199.4                                                   | 181.5                                                | 17.9                                         |

<sup>a</sup> Expressed per tripeptide unit.



**Fig.5** Concentration dependency of the density for (Pro-Pro-Gly)<sub>10</sub> at 10 °C.

ここで、 $\rho_0$ は溶媒の密度である。筆者らは、振動式密度 計を用いて溶液の密度を正確に決定し、密度の濃度依存性 より溶質の部分比容  $\nabla$  を求めた。溶液の濃度はアミノ酸分 析により決定した。**Fig.5**は10℃における (Pro-Pro-Gly)<sub>10</sub> 溶液の密度の濃度依存性を表したものである。また、部分 モル体積 $\overline{V}$ は、溶質の分子量をMとすると、 $\nabla$ との間には 式(6)の関係が成立する。

$$V = \overline{v} M \tag{6}$$

モル体積の計算値V<sub>calc</sub>を求めるには,原子座標データを用

いてペプチド単独の原子体積や露出表面積を算出する必要 があり、(Pro-Pro-Gly)10と (Pro-Hyp<sup>R</sup>-Gly)10 については 既知の構造情報を用いて計算した。(Pro-fPro<sup>R</sup>-Gly)10につ いては構造解析が成功しておらず原子座標データが手に入 らなかったため、(Pro-Hyp<sup>R</sup>-Gly)10のHyp<sup>R</sup>の水酸基をフ ッ素原子に置換することによって計算した。各ペプチドに ついて実測した部分モル体積 $\overline{V}_{obs}$ と $V_{calc}$ の値を**Table 3**に 示す。 両者の値の差は水和に関する項V<sub>hvd</sub>に相当すると解 釈できる25)ことから、モデルペプチドによってこの値が大 きく異なるのは、水和状態が違うためであると考えられる。 水和の程度が高いほど,ペプチドのまわりの水分子が強く 引き付けられてV<sub>hyd</sub>の値が小さくなることから、(Pro-Hyp<sup>R</sup>-Gly)10は (Pro-Pro-Gly)10より水和の程度が高く, 逆 に(Pro-fPro<sup>R</sup>-Gly)10は低いことが分かる。(Pro-Hyp<sup>R</sup>-Gly)10 は、Hyp<sup>R</sup>に水酸基を有することから、水分子と水素結合 を形成しやすくなり、水和の程度が高くなっていると考え ることができる。このような水分子は水素結合のネットワ ークを形成することによって、ペプチド鎖同士の相互作用 をより強くすることが考えられる。X線結晶解析において もHypRの水酸基と水分子との間に水素結合を形成すること が示唆されている17)ことから、筆者らは (Pro-Hyp<sup>R</sup>-Gly)10 は水素結合のネットワークを形成するために水素結合の数 が (Pro-Pro-Gly)10より多くなり、それによるΔHの増大が

(Pro-Hyp<sup>*R*</sup>-Gly)<sub>10</sub>の高い熱安定性の要因であると結論付けた。<sup>26)</sup>

これに対して、(Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>は、分子表面のfProの フッ素原子の低い水素結合能のために三本鎖の水和の程度 が低くなっていると考えられる。水和の程度が低いと、ペ プチド鎖の周囲に存在する水分子の自由度が制限を受けな いと考えることができ、三本鎖状態におけるエントロピー は (Pro-Pro-Gly)<sub>10</sub>に比べて大きくなると予想される。こ こで一本鎖状態における (Pro-Pro-Gly)<sub>10</sub>と (Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>のエントロピーが同じであると仮定すると、(ProfPro<sup>*R*</sup>-Gly)<sub>10</sub>の $\Delta S$ は (Pro-Pro-Gly)<sub>10</sub>に比べて小さくなる。 よって、(Pro-fPro<sup>*R*</sup>-Gly)<sub>10</sub>は (Pro-Pro-Gly)<sub>10</sub>に比べて高 い熱安定性を獲得しているものと考察した。<sup>26)</sup>

#### 9. おわりに

以上, コラーゲンのユニークな三本鎮構造の熱安定性の 研究について解説した。蛋白質の特異的な機能はその構造 によって規定されていることから, 生命現象を解明するた めには蛋白質の構造構築原理を知ることは大変重要である。 Anfinsenのドグマによれば, 蛋白質の立体構造は予測可能 であると考えられるが, このような単純なアミノ酸配列を もった三本鎖構造でさえも未だその構造構築原理を説明で きているとは言えない。筆者らはXとYの両方の位置を HypまたはfProに置換した新規モデルペプチドの合成<sup>27)や</sup> そのX線結晶構造解析<sup>28)</sup>を報告するなど, 引き続きこのテ ーマに取り組んでいる。このような単純な系における構造 の安定化機構の研究を発展させることにより, 一般的な蛋 白質の構造構築原理を解明する手がかりを得ようと努力し ている。

#### 謝 辞

ー連の研究は、土井正光博士(和歌山高専物質工学科)、 西内祐二博士(株式会社ペプチド研究所)、中沢 隆博士 (奈良女子大学理学部化学科)、河原一樹氏、吉田卓也博士、 大久保忠恭博士(以上、大阪大学大学院薬学研究科)との 共同研究である。この場を借りて敬意を表する。

#### 文 献

- 1) R. B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963).
- S. Sakakibara, Y. Shimonishi, Y. Kishida, M. Okada, and H. Sugihara, *Bull. Chem. Soc. Jpn.* 40, 2164 (1967).
- M. Rocha, E. Silvia, W. T. Beraldo, and G. Rosenfeld, Am. J. Physiol. 156, 261 (1949).
- D. F. Elliott, G. P. Lewis, and E. W. Horton, Biochem. Biophys. Res. Commun. 3, 87 (1960).
- 5) S. Sakakibara, Y. Kishida, Y. Kikuchi, R. Sakai,

and K. Kakiuchi, Bull. Chem. Soc. Jpn. 41, 1273 (1968).

- Y. Kobayashi, R. Sakai, K. Kakiuchi, and T. Isemura, Biopolymers 9, 415 (1970).
- 7) T. V. Burjanadze, Biopolymers 32, 941 (1992).
- S. Sakakibara, K. Inouye, K. Shudo, Y. Kishida, Y. Kobayashi, and D. J. Prockop, *Biochim. Biophys. Acta* 303, 198 (1973).
- K. Inouye, S. Sakakibara, and D. J. Prockop, *Biochim. Biophys. Acta* 420, 133 (1976).
- K. Inouye, Y. Kobayashi, Y. Kyogoku, Y. Kishida, S, Sakakibara, and D. J. Prockop, *Arch. Biochem. Biophys.* 219, 198 (1982).
- J. Engel, H. Chen, D. J. Prockop, and H. Klump, *Biopolymers* 16, 601 (1977).
- 12) S. K. Holmgren, K. M. Taylor, L. E. Bretscher, and R. T. Raines, *Nature* **392**, 666 (1998).
- 13) S. K. Holmgren, L. E. Bretscher, K. M. Taylor, and R. T. Raines, *Chem. Biol.* **6**, 63 (1999).
- 14) L. E. Bretscher, C. L. Jenkins, K. M. Taylor, M. L. DeRider, and R. T. Raines, *J. Am. Chem. Soc.* 123, 777 (2001).
- L. Vitagliano, R. Berisio, L. Mazzarella, and A. Zagari, *Biopolymers* 58, 459 (2001).
- 16) R. Improta, C. Benzi, and V. Barone, J. Am. Chem. Soc. 123, 12568 (2001).
- 17) J. Bella, M. Eaton, B. Brodsky, and H. M. Berman, *Science* 266, 75 (1994).
- R. Z. Kramer, L. Vitagliano, J. Bella, R. Berisio, L. Mazzarella, B. Brodsky, A. Zagari, and H. M. Berman, J. Mol. Biol. 280, 623 (1998).
- R. Berisio, L. Vitagliano, L. Mazzarella, and A. Zagari, *Biopolymers* 56, 8 (2001).
- R. Berisio, L. Vitagliano, L. Mazzarella, and A. Zagari, *Protein Sci.* 11, 262 (2002).
- M. Doi, Y. Nishi, N. Kiritoshi, T. Iwata, M. Nago, H. Nakano, S. Uchiyama, T. Nakazawa, T. Wakamiya, and Y. Kobayashi, *Tetrahedron* 58, 8453 (2002).
- 22) M. Doi, Y. Nishi, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, J. Am. Chem. Soc. 125, 9922 (2003).
- K. Kajiyama, T. Tomiyama, S. Uchiyama, and Y. Kobayashi, *Chem. Phys. Lett.* 247, 299 (1995).
- 24) S. Uchiyama, T. Kai, K. Kajiyama, Y. Kobayashi, and T. Tomiyama, *Chem. Phys. Lett.* 281, 92 (1997).
- 25) T. V. Chalikian, M. Totrov, R. Abagyan, and K. J. Breslauer, J. Mol. Biol. 260, 588 (1996).
- Y. Nishi, S. Uchiyama, M. Doi, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi,

#### Netsu Sokutei 34 (4) 2007

解 説

Biochemistry 44, 6034 (2005).

- 27) M. Doi, Y. Nishi, S. Uchiyama, Y. Nishiuchi, H. Nishio, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, *J. Pept. Sci.* 11, 609 (2005).
- 28) K. Kawahara, Y. Nishi, S. Nakamura, S. Uchiyama, Y. Nishiuchi, T. Nakazawa, T. Ohkubo, and Y. Kobayashi, *Biochemistry* 44, 15812 (2005).

#### 要 旨

4(*R*)-Hydroxyproline(Hyp<sup>*R*</sup>)は蛋白質全体では稀なア ミノ酸であるにも関わらず,天然のコラーゲンには頻繁に 存在する。Hyp<sup>*R*</sup>はコラーゲンの三本鎖構造の熱安定性に貢 献することが知られている。これまでに一連のポリトリペ プチド (X-Y-Gly)10 [X, Y: Pro, Hyp<sup>*R*</sup>, or 4-フルオロプ ロリン (fPro)]を用いてコラーゲンの三本鎖構造の安定化 機構を調べる研究が精力的に行われてきた。DSC 解析によ って三本鎖から一本鎖への転移に伴う熱力学量を求めるこ とにより,エンタルピー項が主として (Pro-Hyp<sup>*R*</sup>-Gly)10 の熱安定性に寄与しているのに対して, (Pro-fPro<sup>*R*</sup>-Gly)10 や (fPro<sup>*S*</sup>-Pro-Gly)10ではエントロピー項が主に高い熱安定 性の要因であることが示された。溶液内で実測された分子 体積と結晶構造より得られる固有体積の値との比較から, この違いはペプチドの水和の違いに起因することを明らか にした。



西 義則 Yoshinori Nishi

大阪薬科大学, Osaka Univ. of Pharmaceutical Sciences, TEL. 072-690-1080, FAX. 072-690-1081, e-mail: ynishi@gly.oups.ac.jp 研究テーマ:コラーゲンの三本鎖構造の 安定化機構の解析。構造生物学と熱力学

を融合したドラッグデザインの方法論の 開発 趣味:旅行,音楽鑑賞



内山 進 Susumu Uchiyama 大阪大学大学院工学研究科, Graduate School of Engineering, Osaka Univ, TEL. 06-6879-4215, FAX. 06-6879-7442, e-mail: suchi@bio.eng.osakau.ac.jp 研究テーマ: 生体高分子の溶液物性,分

30元)、、三平高力」の沿版初日、カ 子間相互作用。ヒト染色体のプロテオミ クスおよび高次構造解析。 医療用モノク ローナル抗体の開発 趣味:料理,麻雀



小林祐次 Yuji Kobayashi 大阪薬科大学, Osaka Univ. of Pharmaceutical Sciences, TEL. 072-690-1080, FAX. 072-690-1081, e-mail: kobayasi@gly.oups.ac.jp 研究テーマ:蛋白質の構造・活性相関。 蛋白質の構造構築原理 趣味:仏像鑑賞, 園芸