Netsu Sokutei 30 (4) 189-195

解説

界面活性物質油溶液の恒温滴定カロリメトリー

村上 良,高田陽一,荒殿 誠

(受取日: 2003年7月1日,受理日: 2003年7月27日)

Titration Calorimetry of Oil Solutions of Surface Active Substances

Ryo Murakami, Youichi Takata, and Makoto Aratono

(Received July 1, 2003; Accepted July 27, 2003)

The thermodynamic equations that take account of aggregate formation in the oil solutions were developed to analyze the enthalpy of mixing of an oil soluble substance with solvent oil measured by the isothermal titration calorimetry (ITC). They were applied to the ITC results of the oleyl alcohol-cyclohexane and -benzene mixtures. The enthalpy of aggregate formation of the alcohol molecules was obtained as $-16 \sim -20$ kJ mol⁻¹ and thus the hydrogen-bonded cyclic tetramer was supposed to be a predominant aggregate for the cyclohexane system. On the other hand, the corresponding enthalpy of the benzene systems was -2 kJ mol⁻¹ and thus a hand drum-shaped aggregate or normal micelle with small aggregation number and a large quantity of solvation of the OH group was suggested.

1. はじめに

熱測定は系の物性や反応を分子間相互作用の観点から知 る上で重要な研究手段の一つである。精密な熱測定と正し い解析が,構造に関する情報をも与えることも少なくない。 恒温滴定カロリメトリー(Isothermal titration calorimetry, 以下ITC)もナノワットレベルの精密測定が可能となり, 生体系や微小試料系などの研究に威力を発揮している。¹⁾ ミ セルやベシクルなど溶液中の組織体形成の研究分野でも Olofsson や児玉らの優れた成果が報告されている。²⁻⁵⁾ 我々 も界面活性剤の1成分系および混合系水溶液のITCに関す る研究を積み重ねてきた。これらの論文では,水と界面活 性剤(あるいはその水溶液)の混合熱の測定結果と,適用 すべき熱力学関係式の導出,さらに導かれた関係式による 測定結果の解析とそこから得られる熱力学的情報-部分モ ル溶解エンタルピー,会合体形成エンタルピー,ミセル形 成相図の応用など-が,報告されている。それらの主要部 は本誌の解説としてもまとめて報告した。6)

今回の解説では,両親媒性物質が油に溶解する際のITC の測定結果,測定結果の解析に使用する熱力学関係式の導 出,解析により得られた情報と考察をまとめることにする。 両親媒性物質としてオレイルアルコール (cis-9-octadecene-1-ol, OLA)を, また油としてシクロヘキサンとベンゼン を用いた。このような両親媒性物質と油を実験系として選 んだのは,これらの油/水界面におけるOLAの吸着膜の相 転移現象が, OLA と油の分子間相互作用と深く関連してお り,したがって吸着現象を明らかにするためには,熱測定 によりその分子間相互作用に関する情報を得る必要があっ たからである。会合体形成と吸着の熱力学量の関係はここ では割愛するが, 会合体と吸着膜が平衡にあるときの溶液 中の化学ポテンシャルに関する式, それをとりいれた吸着 の熱力学関係式, さらにOLAの油溶液/水界面吸着への適 用と結果の考察など,重要な基礎的事項が含まれている。 興味のある読者は最近の我々の論文を参考にされたい。

Netsu Sokutei 30 (4) 2003

© 2003 The Japan Society of Calorimetry and Thermal Analysis.

解 説

Fig.1 Thermal power vs time curve of C8E5 at 283.15 K.

2. 水溶液系と油溶液系のITC サーモグラムの比較

Fig.1は,4mlのステンレスセルに純水を約3.2g入れ, カニューラから非イオン性界面活性剤であるペンタエチレ ングリコールモノオクチルエーテル(C8E5)液体を毎回約 2.5 µl ずつ注入した際のサーモグラムである。カロリメー タは Thermometric 社の Thermal Activity Monitor (TAM2277)である。ペルチェ素子でできたサーモパイル により0.15 μW まで検出されており,実験誤差は約0.5 μW である。C8E5と水の混合は発熱である。滴定6滴目までは 1 滴あたり950 µW 程度でほぼ一定であるが,7 滴目で750 μW に急激に低下し, さらに8 滴目以降は約550 μW 程度で 再度ほとんど一定である。7滴目付近がC8E5の臨界ミセル 濃度(CMC)にあたる。この図から予想されるように,純 液体C8E5が水に溶解する際のC8E5の部分モルエンタルピ ー変化(微分溶解エンタルピー) $\Delta_0^W h_s$ はCMC前後ではほ とんど一定であり, CMC付近で急激に変化する。この様子 はFig.2に示されている。濃度が希薄な領域ではC8E5は単 量体として,またCMCよりも十分高い濃度では単量体濃 度はほとんど変化せずに加えたC8E5はミセル粒子として 分散溶解すると考えると,低濃度領域と高濃度領域のΔ^W₀h_s の差は, C8E5単位物質量あたりに換算したミセル形成のエ ンタルピー変化を与える。の

次に油溶性両親媒性物質の油への溶解についてITCの結 果を検討する。Fig.3 は,4 mlのステンレスセルに約3 ml のシクロヘキサンを入れ,OLAの純液体を毎回約2.5 μ lず つ注入した際のサーモグラムである。Fig.1との大きな違い は,油とOLAの混合は吸熱をともなうこと,また6~7滴 目まではほぼ一定の高さの吸熱ピークを示すが,その後 徐々にピークの高さが低くなることである。あとで述べる ように,前者は溶媒-溶質間相互作用の項で説明される。 後者はある濃度以上では,純液体OLAが油に溶解する際の OLAの部分モルエンタルピー変化(微分溶解エンタルピー, 上記の $\Delta_0^{\circ}h_s$ に対応している量)が濃度とともに変化する

Fig.2 Differential enthalpy of solution of C8E5 vs total molality curves: (1) T = 283.15, (2) 288.15, (3) 293.15, (4) 298.15, (5) 303.15, (6) 308.15, (7) 313.15 K.

Fig.3 Thermal power vs time curve of cyclohexane system at 298.15 K.

ことを示しており、少なくともミセル形成のように狭い濃 度範囲で急激に会合体形成がおこることはなさそうである。 したがって、会合体ができているにしても、微分溶解エン タルピーが変化している領域では、ミセル形成のように単 量体濃度はほとんど変化せずに加えたOLAが会合体として 分散溶解すると考えることはできない。このことからサー モグラムの解析にはミセル形成系と異なる新たな熱力学関 係式が必要となる。

3. 熱力学関係式

Fig.1の系では共存相(空気相)の水相への溶解は,ITC の結果には影響を与えないとして定式化がなされているが, 今回は採用する実験系が油/水界面吸着と関連しているこ ともあって,水飽和の油溶液を使っている。このことも考 慮した熱力学関係式が必要である。Fig.4にあるように,滴 定用のステンレスセルにはn^{*}_wモルの水で飽和されているn。 モルの油が入っており,これはn[®]_wモルの過剰な水と共存し

界面活性物質油溶液の恒温滴定カロリメトリー

Fig.4 Mixing process of oil and alcohol and definition of the quantities used in the text.

ている。このセルに, n_s モルの純粋なOLA液体を注入する としよう。油相での混合や分子間相互作用に焦点をあてる ために過剰な水相は純水であるとし,またこの混合の過程 で n_w^{0} モルの水が過剰な水相から油相に移行したと考える (これとは逆に,混合過程で水が油相から過剰水相へ移行す るとしても以下の式で n_w^{0} を $-n_w^{0}$ に変えるだけでよい)。混 合前後のそれぞれの状態の部分モルエンタルピーをFig.4 に あるように定義すると,温度Tおよび圧力p一定下での混 合エンタルピーHMは

$$H^{M} = [n_{o}h_{o} + n_{s}h_{s} + n_{w}h_{w}] - [(n_{o}h_{o}^{*} + n_{w}^{*}h_{w}^{*}) + n_{s}h_{s}^{0} + n_{w}^{0}h_{w}^{0}]$$
(1)

である。ここで $n_w = n_w^* + n_w^0$ とおいた。(1)式から油の単位 質量あたりの混合エンタルピー h^M は次式で与えられる

$$h^{\rm M} = H^{\rm M}/n_{\rm o}M_{\rm o} = M_{\rm o}^{-1}(h_{\rm o} - h_{\rm o}^{*}) + m_{\rm s}(h_{\rm s} - h_{\rm s}^{0}) + m_{\rm w}^{*}(h_{\rm w} - h_{\rm w}^{*}) + m_{\rm w}^{0}(h_{\rm w} - h_{\rm w}^{0})$$
(2)

ここで油のモル質量を M_o , OLA の重量モル濃度を m_s , n_w^* と n_w^0 に対応する水の重量モル濃度をそれぞれ m_w^* と m_w^0 とし た。したがって h^M のOLA 濃度 m_s への依存性は,油相に関 するGibbs-Duhemの式を利用して,

$$(h^{M}/m_{s}) = h_{s} - h_{s}^{0} + (m_{w}^{0}/m_{s})_{T,p}(h_{w} - h_{w}^{0})$$
 (3)

となる。この式は一般式であり、OLAを滴定することによる過剰水相からの水の移行の影響(右辺第2項)が無視できるならば、OLAの純液相から油相への溶解に伴う部分モルエンタルピー変化 $h_s - h_s^0$ が求まることを示している。

ところで長鎖アルカノールは油中で会合体を形成する場合があることが知られている。⁸⁻¹²⁾ OLAの油溶液の場合に も会合体が形成されるならば,その溶存状態の変化をあか らさまに含む関係式を用いてITCの結果を解析すると,会 合体形成に関する情報が得られることが期待される。そこ でOLAと油を混合した際に,部分モルエンタルピーが h_a である会合体が n_aモル形成され,部分モルエンタルピーが h_{1s}である単量体が n_{1s}モル存在している状態にあるとする と(1)式は

$$H^{M} = [n_{o}h_{o} + n_{1s}h_{1s} + n_{a}h_{a} + n_{w}h_{w}] - [(n_{o}h_{o}^{*} + n_{w}^{*}h_{w}^{*}) + n_{s}h_{s}^{0} + n_{w}^{0}h_{w}^{0}]$$
(4)

と書くことができる。単量体と会合体の重量モル濃度をm_{1s} とm_a, 平均会合数をN_aとすると, OLAの質量保存の関係は

$$m_{\rm s} = m_{\rm 1s} + N_{\rm a} m_{\rm a} \tag{5}$$

となるので,油単位質量あたりの混合エンタルピーは

$$h^{M} = H^{M}/n_{o}M_{o} = M_{o}^{-1}(h_{o} - h_{o}^{*}) + m_{1s}(h_{1s} - h_{s}^{0}) + N_{a}m_{a}(h_{a}/N_{a} - h_{s}^{0}) + m_{w}^{*}(h_{w} - h_{w}^{*}) + m_{w}^{0}(h_{w} - h_{w}^{0})$$
(6)

となる。したがってℎ™の濃度依存性は

$$(h^{M}/m_{s}) = \Delta_{0}^{A}h_{s} - (\Delta_{0}^{A}h_{s} - \Delta_{0}^{1}h_{s})(m_{1s}/m_{s}) - (h_{a}m_{a}/N_{a})(N_{a}/m_{s}) + (m_{w}^{0}/m_{s})(h_{w} - h_{w}^{0})$$
(7)

となる。ここで,純粋な液体OLAが油中に単量体として分散する際の部分モルエンタロピー変化を $\Delta_0^1 h_s$,会合体として分散する際のOLAの部分モルエンタロピー変化を $\Delta_0^2 h_s$ とした。すなわち

$$\Delta_0^1 h_s = h_{1s} - h_s^0 \tag{8}$$

および

$$\Delta_0^{\mathrm{A}} h_{\mathrm{s}} = h_{\mathrm{a}} / N_{\mathrm{a}} - h_{\mathrm{s}}^0 \tag{9}$$

である。

あとで**Fig.8**で示すように,OLAの混合により移行する 水の量に関連した項(*m*_&) *m*_s)は無視できるほど小さい ので,式(3)は

$$(h^{\rm M}/m_{\rm s}) = h_{\rm s} - h_{\rm s}^0$$
 (10)

となり, OLA の微分溶解エンタルピーを与える。一方(7) 式からは

$$(h^{M}/m_{s}) = \Delta_{0}^{A}h_{s} - (\Delta_{0}^{A}h_{s} - \Delta_{0}^{1}h_{s})(m_{1s}/m_{s}) - (h_{a}m_{a}/N_{a})(N_{a}/m_{s})$$
 (11)

が得られる。したがって(11)式は微分溶解エンタルピーを 単量体および会合体の対応する量で具体的に表現したもの となっている。Fig.3 で示したように, $(h^{M/} m_s)$ は濃度 とともに変化するので, m_s 濃度における $(h^{M/} m_s)$ を $\Delta h_s(m_s)$ と書くことにする。

会合体が形成されていない希薄な領域 (m 。 0) では

$$\Delta h_{\rm s}(m_{\rm s} \quad 0) = \Delta_0^1 h_{\rm s} \tag{12}$$

である。会合体が存在していても単量体と溶媒(油)との 相互作用は変化しない,すなわち会合溶液が理想会合溶液

Fig.5 FT-IR Spectra of oleyl alcohol. (a) cyclohexane solution: (1) $m_s = 14.93$, (2) 29.54, (3) 39.88, (4) 50.11, (5) 59.14, (6) 68.97 mmol kg⁻¹, (b) benzene solution: (1) $m_s = 19.92$, (2) 58.38, (3) 119.3 mmol kg⁻¹. m_s is the molality of oleyl alcohol in the cyclohexane or benzene solution.

であるとすると,次式

$$\Delta_1^A h_s(m_s) = h_a / N_a - h_{1s}^0$$
(13)

で定義される会合体形成のエンタルピーは、(11)式より

 $\Delta_1^A h_s(m_s) = [\Delta h_s(m_s) - \Delta h_s(m_s - 0)$ $+ (h_a m_a/N_a)(-N_a/-m_s)] \div [1 - (-m_{1s}/-m_s)] \quad (14)$

で計算される。すなわち平均会合数や単量体濃度のOLA濃 度依存性がわかれば,会合体形成のエンタルピーを見積も ることができる。

4. 実験結果と考察

FTIR: OLA の油中での会合状況について予め情報を得 るために,OLA のOH 基準伸縮振動に着目して赤外線吸収 測定をおこなった。また会合状況のOLA 濃度依存性と(14) 式に現れている(m_{1s}/m_s)を見積もるために,幾つかの OLA 濃度でFTIR スペクトルを測定した。シクロヘキサン 系とベンゼン系の例をFig.5 に示してある。シクロヘキサン 系では,濃度が高くなると,3644 cm⁻¹のフリーのOH伸

192

Fig.6 Enthalpy of mixing vs. molality curves of oleyl alcohol (a) cyclohexane system: (1) T = 288.15, (2) 293.15, (3) 298.15 K, (b) water-saturated benzene system: (1) T = 288.15, (2) 293.15, (3) 298.15 K.

縮振動に由来するものに加えて3535 および3340 cm⁻¹付近 の吸収が顕著になってくる。いずれも水素結合による会合 体のものと考えられており,前者は2量体や鎖状会合体, 後者は環状4量体とされている。一方ベンゼン系では,フ リーのOH伸縮振動に由来する吸収は3644 cm⁻¹から約40 cm⁻¹程度低波数側へシフトしている。これは溶質間の相互 作用ではなく,OH基とベンゼン分子の引力的相互作用で あると思われる。また120 mmol kg⁻¹程度の高濃度でも環 状会合体に由来する吸収は見られず,2量体や鎖状会合体 由来の吸収がわずかに認められる程度である。したがって シクロへキサン系とベンゼン系ではアルコールの溶存状態 は大きく異なることがわかる。ITCの結果からはさらにど のような情報が得られるのだろうか。

ITC: OLAの純液体とシクロヘキサンとの系のITCサー モグラムはFig.3に示した。ベンゼン系のサーモグラムの基 本形もFig.3と大きくは変らない。一滴定あたりの混合エン タルピーは対応するピークの面積から計算され,また与え られたOLA物質量n。での混合エンタルピーH^Mは,第1ピ ークから対応するピークまでの面積の積分値で与えられる。 このようにして濃度の関数として得られた量H^Mを溶媒の単

Fig.7 Comparison between values of $\delta h^{M}/\delta m_s$ and h^{M}/m_s at 298.15 K: (1) cyclohexane system, (2) water-saturated benzene system: () $\delta h^{M}/\delta m_s$, () h^{M}/m_s .

位質量あたりに換算した量^h^Mをもとめ,これを濃度m_sに 対してプロットするとFig.6が得られる。両系ともに吸熱で あり曲線の基本的な形は変らない。しかしながら,シクロ ヘキサン系では曲線が明確に上に凸でありしかも温度依存 性が明瞭であるのに対して,ベンゼン系では直線に近くま た温度依存性もほとんどないように見える。これらの二つ の系の定性的な挙動の違いを,部分モルエンタルピー変化 を計算して定量的に議論することにしよう。

純OLA液体の油への溶解にともなう部分モルエンタルピー変化(微分溶解エンタルピー)は(3)式をFig.6の曲線に適用して計算される。298.15 Kにおいて(3)式の右辺第二項は無視できる量であるとして計算された値をFig.7 に でプロットした。今回の実験のように決まった量の溶媒に単一成分を滴定する場合で,しかも滴定あたりの濃度増加 δm_s が非常に小さい場合には,一ピークあたりのピーク面積 δh^{M} との比 $\delta h^{M}/\delta m_s$ が h^{M}/m_s と近似的に等しいと見なすことができる。⁶⁾ Fig.7 にはこのようにして計算されたものが印でプロットされている。±0.25 kJ mol⁻¹の誤差範囲内で両者は非常に良い一致を示している。しかしながらここでは,滴定液として溶液を扱うことも視野にいれて,一般性を損なわないように h^{M}/m_s を微分溶解エンタルピーであるとして計算を進めることにする。

幾つかの温度における与えられた溶液濃度における微分 溶解エンタルピー $\Delta h_s(m_s)$ をFig.8に示した。両系ともに無 限希釈での値 $\Delta h_s(m_s)$ のは正であり,溶媒-溶質分子間相 互作用は溶媒-溶媒,溶質-溶質間相互作用よりも弱いこ とがわかる。ベンゼン系の $\Delta h_s(m_s 0)$ がシクロへキサン系 のものよりも4 kJ mol⁻¹程度小さいことがわかる。これは FTIR スペクトルにおいて,単量体のOH 基の吸収極大が OH 基とベンゼン分子との相互作用により約40 cm⁻¹程度

Fig.8 Partial molar enthalpy change of oleyl alcohol vs. molality curves. (a) cyclohexane system:
(1) T = 288.15, (2) 293.15, (3) 298.15 K, (b) benzene system:
() water-saturated benzene,
() dry benzene: (1) T = 288.15, (2) 293.15, (3) 298.15 K.

低波数側へシフトしていることと対応している。また両系 ともに低濃度での $\Delta h_s(m_s)$ は濃度によらずほぼ一定(理想 希薄溶液)であるが,10~20 mmol kg⁻¹を越えた付近から 低下がみられる。

FTIR の結果をみると、シクロヘキサン系の高濃度では会 合体ができていることは確かである。したがって会合体形成 を考慮した解析式(14)を利用すると、会合体形成のエンタ ルピーを評価できる。但しこのためには、平均会合数や単量 体濃度の全濃度依存性、すなわち N_a/m_s と m_{1s}/m_s を知らなければならない。会合数そのものが2~4量体程度 であるので前者は無視できるとして、後者は無視できそう にない。これはミセルのような比較的大きな会合体を形成 する場合 - すなわち相分離的に会合体が形成される場合 - と ちがって、 Δh_s が広い濃度領域で緩やかに変化することから わかる。そこで、FTIR スペクトルを利用して m_{1s}/m_s を 次のようにして近似的に求めることとした。フリーのOH 基の吸収極大3644 cm⁻¹における吸収極大値を A_{3644} とおく と低濃度では m_s の増加に伴って直線的に増加する。すなわ ち $A_{3644} = \alpha m_s$ である。しかしながら、高濃度においてはこ

Netsu Sokutei 30 (4) 2003

Table 1	1	Enthalpy	of	aggregate	formation.
---------	---	----------	----	-----------	------------

	$\Delta_1^{\rm A} h_{\rm s}(m_{\rm s}=100) \ / \ {\rm kJ} \ {\rm mol}^{-1}$				
T/K	cyclohexane	sat. benzene	dry benzene		
288.15	- 20.66 ± 0.51	-2.39 ± 0.40	-1.95 ± 0.34		
293.15	- 18.95 ± 0.50	-2.27 ± 0.48	-1.80 ± 0.36		
298.15	- 16.34 ± 0.53	- 1.95 ± 0.36	- 1.53 ± 0.38		

の直線から ΔA_{3644} だけ低い強度を与える。この低下分 ΔA_{3644} は会合体中のOLA分子の数に比例すると考えると,単量体 濃度 m_{1s} は次式で計算される

$$\Delta A_{3644} / \alpha m_s = (m_s - m_{1s}) / m_s \tag{15}$$

したがって会合体形成のエンタルピー計算に必要な m_{1s}/m_{s} は

$$m_{1s}/m_s = 1 - (1/\alpha)(\Delta A_{3644}/m_s)$$
 (16)

により見積もることができる。たとえば100 mmol kg $^{-1}$ において m_{1s} / $m_s = 0.22 \sim 0.26$ 程度である。

このようにして計算されたシクロヘキサン系の会合体形 成のエンタルピー ($m_s = 100 \text{ mmol } \text{kg}^{-1}$)の値が**Table 1** に纏められている。 $\Delta_1^A h_s$ は - 16 ~ - 20 kJ mol⁻¹程度の大き さである。通常水素結合エネルギーは - 10 ~ - 40 kJ mol⁻¹ 程度とされているので,得られた結果はFTIR スペクトルの 結果とも一致している。これは,ここで示した熱力学関係 式とそのITC への適用が適切であることを示している。

さてベンゼン系のITC 結果の解析を行う。ベンゼン系に 関してはシクロヘキサン系のように m_{1s}/m_s を計算する ことができない。これは3644 cm⁻¹付近での吸収バンドは OLA 単量体からの寄与だけでなく会合体からの寄与も含ん でいると考えられるからである。しかしながら, $\Delta h_s(m_s)$ - $\Delta h_s(m_s 0)$ の値そのものがシクロヘキサン系の15~20% 程度であるので, m_{1s}/m_s の補正の寄与がある程度影響 するにしても, $\Delta_1^A h_s$ の値に大きな影響は与えないと考えら れる。計算された値は表に示されている。 $m_s = 100$ mmol kg⁻¹の高い濃度でも僅かに2 kJ mol⁻¹程度しかエンタルピ ーは低下しない。したがって水素結合が関与した会合体形 成ではないと結論してよいと思われる。

ではベンゼン中ではどのような会合状況にあるのだろうか。 この実験系では水飽和の条件でITC が行われており,水のベ ンゼンへの溶解性を考慮すれば,まず逆ミセル様会合体形成 が候補に上がる。この考えが正しいかどうかを調べるには, 少なくともシクロヘキサン系程度に水含量の少ない条件での ITC が必要である。そこでカールフィッシャー法による水分 定量も利用して,水の影響を調べることとした。

Fig.8にはOLAが存在しない状態での水分含量が110 ppm 程度のベンゼンを油としたITCの結果())も示して

Fig.9 N_w vs. N_s curve in water-saturated benzene solution of oleyl alcohol; $N_s = 8$ corresponds to $m_s = 102.4$ mmol kg⁻¹.

ある。OLA が存在しない状態での水飽和ベンゼンの水分量 が700 ppm 程度, またシクロヘキサンのそれが80 ppm 程 度であることから判断して, 110 ppm はほぼドライなベン ゼンと見なしてよい数値だと思われる。△h。の値とその濃 度依存性は,水飽和の場合とあまり変らない。またms= 100 mmol kg-1における会合体形成のエンタルピーも, Table 1 に示されているように,水飽和ベンゼン系より僅 かに発熱量が小さいがほとんど変らないと言える。このよ うなことから,油中の水分子の存在がOLA分子の会合体形 成に影響を与えているとは考えがたい。したがって,たと え水飽和ベンゼン中でも逆ミセル形成は起こっていないと 考えられる。さらに水分含量の観点から会合体形成を検討 するために, OLA 濃度の関数として水飽和ベンゼン中の水 分量を測定した。ベンゼン分子千個に対する水分子および OLA分子の数をそれぞれNwおよびNsとして,実験結果を $N_{\rm w}$ vs $N_{\rm s}$ の形で**Fig.9**に示した。横軸の $N_{\rm s}$ = 8が大体 $m_{\rm s}$ = 100 mmol kg-1 に対応している。ここで気付く大事な点は, NwはNsとともに直線的に変化し,会合体形成がおきている と思われる濃度N_s > 4.7 でも直線関係を維持したままであ ることである。さらにNw/Nsは約0.076であり,ベンゼン 溶液で逆ミセルが形成されるにしては,小さすぎる。

以上のような結果から,逆ミセル状ミセル形成の可能性 はほぼないといえる。FTIRのスペクトルから判断すると, OH基は高濃度でもペンゼン分子との相互作用を保ってい る状態である。また油/水界面吸着の結果の解析からは, 溶液中の非理想性がすべて会合体形成に起因するとの仮定 をすれば,会合数として10~20程度が得られる。疎水基に 2重結合をもつことも考慮すると,π-π相互作用を含む疎 水基間相互作用,ベンゼンと疎水基の相互作用,さらに親 水基とペンゼンとの相互作用も可能な形の会合体が形成さ れると考えるのが自然である。現在のところ構造について の直接的な情報は得ていないが,2重結合がスタッキング した部分を含む疎水基集団を胴体部としヒドロキシル基を 太鼓面とした鼓状会合体や,親水基部を外にしてその周囲 にはたっぷりと溶媒を含んだルーズな(ノーマル)ミセル などが考えられる。

5. まとめ

オレイルアルコール (cis-9- octadecene-1-ol, OLA)が シクロヘキサンあるいはベンゼンに溶解する際のITCの測 定結果,測定結果から微分溶解エンタルピーや会合体形成 エンタルピーを計算する熱力学関係式の導出,さらに解析 により得られた情報とそれらに関する考察を纏めた。シク ロヘキサン系では会合体形成エンタルピーが - 16~-20 kJ mol-1程度であった。これは,水素結合形成と同じ程度の 大きさであり, FTIRの結果とも併せると, 2量体, 鎖状会 合体,環状4量体が形成されていること,さらに,高い溶 質濃度では環状4量体形成が支配的であることなどが明ら かとなった。一方ベンゼン系では, 会合体形成エンタルピ ーは - 2 kJ mol - 1 程度であり,水素結合による会合体形成 ではないことが示唆された。FTIR さらに界面張力測定結果 からの情報を併せ検討すると,2重結合がスタッキングし た部分を含む疎水基を胴体部としヒドロキシル基を太鼓面 とした鼓状会合体や,親水基部を外にしてその周囲にはた っぷりと溶媒を含んだルーズな(ノーマル)ミセルの可能 性があることが示唆された。

文 献

- 1) 特集 滴定カロリメトリー, 熱測定 28 (2001).
- 2) G. Olofsson, Netsu Sokutei 19, 76 (1992).
- B. Andersson and G. Olofsson, J. Chem. Soc. Faraday Trans. I 84, 4087 (1988).
- 4) K. Weckström, K. Hann, and J. B. Rossenholm, J. Chem. Soc. Faraday Trans. I 90, 733 (1994).
- 5) Netsu Sokutei 28, 129 (2001).
- A. Ohta, N. Ikeda, and M. Aratono, *Netsu Sokutei* 28, 144 (2001).
- R. Murakami, Y. Takata, A. Ohta, T. Takiue, and M. Aratono, J. Colloid Interface Sci. in press.
- M. Costas and D. Patterson, J. Chem. Soc. Faraday Trans. 81, 635 (1985).
- R. Aveyard, B. J. Briscoe, and J. Chapman, J. Chem. Soc. Faraday Trans. 1 69, 1772 (1973).
- M. Iwahashi, N. Hachiya, Y. Ozaki, H. Mutazawa, Y. Liu, M. A. Czarnecki, T. Hirouchi, and M. Suzuki, *J. Phys. Chem.* **99**, 4155 (1995).
- 11) G. M. Forland, F. O. Libnau, O. M. Kvalheim,

and H. Hoiland, *Applied Spectroscopy* **50**, 1264 (1996).

12) G. M. Forland, F. O. Libnau, O. M. Kvalheim, H. Hoiland, and A. Chazy, J. Phys. Chem. B 101, 6960 (1997).

要 旨

恒温滴定カロリメトリーにより測定された油溶性物質と 油の混合エンタルピーを解析するために,溶液中での会合 体形成を考慮した熱力学関係式を導出した。これらの式を オレイルアルコール-シクロヘキサンおよび-ベンゼン混 合系に適用した。シクロヘキサン系では会合体形成のエン タルピーは-16~-20 kJ mol⁻¹であり,水素結合による 環状4量体形成が主であることを明らかにした。一方ベン ゼン系では,対応するエンタルピーは-2 kJ mol⁻¹程度で あり,鼓型会合体あるいはOH 基が充分に溶媒和した会合 数の小さいミセル状会合体であることが示唆された。

性

村上 良 Ryo Murakami 九州大学大学院理学府博士後期課程, Dept. Chemistry and Physics of

Condensed Matter, Graduate School of Sciences, Kyushu Univ., TEL. 092-642-2580, FAX. 092-642-2607, e-mail: ryolscc@mbox.nc.kyushu-u.ac.jp 研究テーマ:界面活性剤の吸着と溶液物

荒殿 誠 Makoto Aratono
 九州大学大学院理学研究院化学部門教授,
 Dept. of Chemistry, Faculty of Sciences,
 Kyushu Univ., TEL. 092-642-2577,
 FAX. 092-642-2607, e-mail: m.arascc@
 mbox.nc.kyushu-u.ac.jp
 研究テーマ:流体系界面が関与する現象の物理化学