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Generalized solutions play an important role in the modern theory of partial differential

equations. The mathematical model of interdiffusion in the bounded mixture (i.e. layer) showing

constant concentration (e.g. in solid or liquid solutions) and variable diffusivity of the components

is presented. Using the idea of generalized solution, we will show an exact expression for the

evolution of components distribution. The experimental results for ternary Co-Ni-Fe alloy are

presented. We present the practical solution of the interdiffusion in multi layer materials and

uphill diffusion (diffusional structures) in ternary diffusional couples of finite thickness. Presented

model allows for many conclusions to be derived. The key massage is a great potential of

generalized Darken model of interdiffusion in describing the mass transport in solid solutions.

We show that modern mathematics now-days allows for the modelling. practical calculation and

the better understanding of the real transport problems.

1. Introduction

Today's dynamic simulations of transport processes
are powerful and widely used, e.g. by the space industry
and in the advanced control systems on modern plants.
Yet, we still make little use of dynamic modelling of
complex thermochemical processes. This article will
show the desktop simulation of complex mass transport
process namely, the interdiffusion in multicomponent
solid solutions.

Many processes in solids require the redistribution
of mass over macroscopic distances. This redistribution
occurs through a random process called diffusion (inter-
diffusion in multicomponent media) and its macroscopic
description rests on specific differential equation called
the continuity equation. Its solutions are used for widely
different problems, from heterogeneous reactions to heat
treatment of alloys from interdiffusion in liquid electro-
Iytes to the motion of molecules in biological membranes.
Apparently, there is a growing demand for the more

advanced modelling of the real, practical systems. The

polycrystalline, multiphase materials and nonplanar
geometries are the basic examples.

The phenomenological description of diffusion
proposed by Onsager ' dominates interdiffusion study.
An Onsager phenomenological scheme is useful in
describing the behaviour of a closed system but in an
open system the translation velocity usually does not
vanish.’* Consequently. the general case of interdiffusion
in multicomponent system and many other complex
transport processes cannot be satisfactorily described by
a simple extension of the methods currently used.

The developments of modern mathematics offer an
alternative approach, which is based on the idea of the
generalized solution. i.e. week solution. It allows the
quantitative description of very complex transport
processes. It allows for the generalization of Darken
phenomenological model of interdiftfusion. In the modern
theory of partial differential equations generalized
solutions play a fundamental role. There are two reasons
why we need to apply the generalized solutions: i) such

formulation of the practical problems in the natural way
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allows to deal with the initial conditions given by the
step functions and with nonhomogeneous objects (e.g.
containing interfaces, math: containing singularities), ii)
the generalized solution allows easy transition to the
approximate solution and offers the numerical methods

of its solving.

2. A generalized solution of the interdiffusion

in an open, multicomponent bounded system

Although a general phenomenological relations for
interdiffusion are available, these are hardly simple and
their effective solutions are few and narrowed to the
closed systems. Investigations of multicomponent systems
are usually limited to the determination of interdiffusion
coefficients.4’ Such studies are almost entirely restricted
to metallic alloys and, because of experimental diffi-
culties, are few for systems with more than three
components.?’

The different phenomenological description of
interdiffusion has been proposed by Darken.® It rests
on the postulate that mass flux in ponderable media is
a sum of diffusional and drift (translation) flow. The

renewed interest in Darken's idea is seen in the recent

approaches to interdiffusion in binary solid solutions.”’

This paper introduces the reader to the generalized
Darken's phenomenological scheme and presents recent
experimental results. The particulars of this model for
the closed system®’ and the more general description of
interdiffusion that incorporates the equation of motion
can be found elsewhere.

2.1 The phenomenological description and the
mathematical model of interdiffusion in the
multicomponent solid solution

In case of multicomponent solutions the force,
being a result of concentration gradient, causes the atoms
of the particular element to move with a velocity (v),
which may differ from the velocity of atoms of the other
elements. Because the medium is common for all
elements the fluxes are coupled and their local changes

can influence the common mixture translation velocity

(v). The above phenomenon is called interdiffusion.®

When external forces are negligible, the interdiffusion
process can be treated as pure diffusional mixing.
Nevertheless, the change of the mass distribution in the
diffusional couple (bounded body) implies its translation

to maintain an initial position of the body mass centre
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(i.e. when external force fields and initial velocity are
negligible, then the position of the body mass centre
does not vary with time). This conclusion leads to
generalization of the boundary conditions, which is
essence of our model.%'"" We state that the position of
the free mixture boundary depends usually on time. The
main targets of the model are to predict a concentration
distribution of the elements for an arbitrary time (i.e.
to calculate the evolution of distributions as a function
of time) and/or to calculate the diffusivities, when the

The trem formu-

lation of the problem is used here to mean an initial

elements’ distributions are known.!?’

boundary-value problem for partial differential equations,
namely for the equations of mass conservation. The
formulation of the interdiffusion problem is a mathe-
matical idealization, which consists of: i) data, ii)
unknowns, iii) physical laws and relevant assumptions,
iv) initial and boundary conditions. In this paper the
retarded form of the generalized model of interdiffusion
is presented.

Data:

D
2)

molecular masses of the elements: My,...., M,
diffusivities of the elements: D;..., Dr, (may depend

on composition),

3) initial position of the right end of the system (i.e.
the border of the diffusional couple): A,

4) time of the process duration: ?7,

5) initial density distribution of the elements in the

diffusional couple:

—A<x

IA

PIC,s ey Pr(®) A

such that the condition no.6 in data is satisfied.
6) initial concentration of the mixture (see also next

section):
r I °
c :,.;zl AZ pi

Physical laws:

1) the law of the mass conservation (continuity equation

of an i-th element. The law that tells that the local
change of density of i-th elements is a result of its
net in- or an outflow only:

api
ot

where the reactions within the interdiffusion zone are

= -9 (pini ;= )
o (pivi) (i=1, ..,r)

not allowed. Following Darken drifts flow idea we

postulate that the flux of i-th elements (ji=pwv;) is a
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sum of the diffusional flux (jo; =pves) and translation
flux (pv):

dpi
ivi= — Di——
piv dx

+ piv
where diffusional flux (ju; =PV =—D; " dp/ dx) is
defined by the Fick'ian formula.

2) postulate of the constant mixture concentration. We
postulate the equation of state, which tells that the
concentrations of all elements at any position and

for every time is constant:

)

1
+ - = constant = ¢
M

This assumption can be used for solid or liquid
solutions and when free volume of mixing and the
gradient of pressure or stress are negligible.
It can be noted that the number of equations
(r +1) equals the number of unkowns (pi, ..., Pr, V).
Initial conditons:
1) positions of the left and right _ends of the mixture:
Ai(0)=—A, X(0)=A, where indexes "1" and "2"

denote the left and right end of the mixture,

respectively. Let us remember that in the presented
dynamical model of interdiffusion the positions of
the mixture ends can be affected by the interdiffusion
process and/or external forces?’ and are functions of
time,

2

~—

initial density distributions of the elements in the

mixture:

fori=1,..,r

pi(0,x) = Pi(x)

Boundary conditions:

1) relation between the velocity of boundaries (dAy/dt

= xj(t)) and mass flux at the boundaries:

MO = u(n M@ (=1.2)

3)

In still simpler words, we postulate that the velocity
of the boundary equals the velocity of the local mass
centre of the mixture, «, at the boundary. It is
apparent because otherwise, e.g. if the velocity u
differs from the velocity of the boundary, the particles
would jump out (leave) the surface of the diffusional
couple. The above boundary conditions do not imply
a constant density of the elements at the boundaries,
which can vary during interdiffusion process.

2) We postulate that when the mass flow through the

boundary occurs, i.e. the system is open, then, the
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gradients of components at the boundary are known

functions. ¢’

—a%(z, LM@Y = %) (4a)

d

These functions can be calculated, e.g. from the

(i=1, ..,r—1)

known rate of reaction at the boundary (interface).
When the mass flow through the boundary does not
occur (the system is closed) then, the gradients of

all components at both boundaries vanish:#

—gp—'(nm(t)):o (i=1 ) 4b)
X

The unknowns: The above data, physical laws, initial
and boundary conditions allow to compute:

1) positions of the mixture boundaries, A(2), Aa(2), 2)
densities of all elements as a function of time and
position, pi(z,x) and, 3) the mixture translation velocity
as a function of time and position, v(z,x).
Reformation of the problem. We define a new variable
w; (t, z) the spatially shifted deviation of the i-th element
mole fraction from its average in the mixture (called

briefly the shifted deviation):

I —
M i (1, Xy — mi

wi(t,2): =
where m; denotes the mean mole fraction of the i-th
element in the diffusional couple: m; : = m/2AcM; and,
m; is the total mass of the i-th element per unit surface
of the mixture:
A2(1)
mi = j pi (7, x) dx (5)
AL
The definition (5) allows to obtain the rescaled
expressions for: ow; /dz (¢, 2), wi (0,z) and v; (z, 2).9
One can show that law of the mass conservation, Eq.(1),

upon introducing above rescaled expressions becomes:

owi o d OWi L T dw
o ®9 @ [Di 5 (9~ it +mi) (D }a—z(m)]

i—1,...r

©

where w=(wi, ..., wy} and D=(D,, ..., D;) are vector
functions of the shifted deviations of all elements and
intrinsic diffusivities® and (- | +) denotes the scalar
product in Rr.
In a closed system, % (1)= 0,!"" the problem of
interdiffusion reduces further to:

ow

ow oo _d ey OW
o= F w0, 5% (0] ™
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w0, 2) =w (2) (3)

Jw
oz

{, wA):g—;” (LA =0 )
where F is the known function.!¥

The equalities (8) énd (9) present the reformulated
initial and boundary conditions, respectively. The
equations (7)-(9) form a system of differential equations
where unknowns are shifted deviations, w; They form
the initial-boundary value problem for the interdiffusion
in a closed system where initial distribution of elemerts
is an arbitrary known function. One may remark that
we have condensed the problem from "r+1" equations
to one partial differential equation, Eq.(7).
2.2 Generalized solution

In this section an idea of the generalized solution
is presented. Let us take some absolutely continuous
function, @(z) which has a square integrable derivative
de¢/dz (2) defined almost everywhere in the diffusional
couple - in the interval [—A, Al If we multiply Eq.(7)
by ¢(z) and integrate the obtained equality with respect
to z within the range, | ‘s we obtain:

A A

ow J. o) dw
— D e@di=] —— (1, 2),

J‘A at o (P(d ,\az F(W 2 o

(.2)- 9@ dz (10)

where (+) denotes the scalar product in Rr. Integrating
by parts the right-hand side of Eq.(10) and considering
the condition (9) leads us to the following relation:

ow .y, de
Y (t.2)) & (z)dz

A5, A
J a“ 2 9@ dz ”J F(w, 2,
A Ot A

arn)
The main target of this approach was to move the
derivative from function F, Eq.(7), into function Y,
Eq.(11), which by our assumption is differentiable.
Consequently, we can consider a solution, w(¢, z), which
does not have second spatial derivative, 02/dz2. By the

analogous treatment the initial conditions (8) can be

written:
A Ao
I wi(0.2) 9 (2)dz :j wi(z) @ (z)dz 12)
A A
where w(z) is a given function (function of the initial

shifted deviations of all elements).

Definition of the generalized solution: A function w(t,z)
is called a generalized solution of the problem (7)-(9)
if and only if the identity:
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A
j w9 ()ds =
A

JAH )0 dz ff'f ¥ w o, —%} () - %_Qf (x)dzdt
A G YA 2 <
(13)
(which is equivalent to the conjunction (7) and (8)) holds
for every W.

Thus, the classical boundary-value problem (7)-(9)
was reformulated to single variational identity (13). The
final step is computation of solution, which bases on
the idea of approximate solution. An example of the
numerical method (the Galerkin method) of solving the
problem (7)-(9) has already been presented.!?

2.3 Interdiffusion in Co-Ni-Fe alloys

The experimental data and simulations of the
interdiffusion processes in finite diffusional couples are
shown in Figs.1 and 2. For calculations the following

data were used:
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Fig.1 Interdiffusion in the Co-Fe-Ni finite diffusional

couple at 1588 K. The experimental and
calculated distributions of elements after 17 and

131 hours of the annealing time.
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Fig.2 Interdiffusion in the Co-Fe-Ni finite multilayer

diffusional couple at 1588 K. The calculated
distributions of elements after 17 hours of the

annealing time.

1) atomic masses of Co, Fe and Ni: 58.9333, 55.847
and 58.69 :

thickness of the diffusional couple: 2A =0.1 cm ;
diffusion coefficients at 1588 K'? :D¢o=6.31-10 10,
Dr.=16.25-10 ¢ and Dxi=2.89-10

2
3)

-~

0 ecm?2s ! ;

4) ¢=0.15 molem™ ;

5) time of the process (e.g. annealing) * =17 and 131
hours ;

6) the parameter of the Galerkin approximation'? : N =

40 ;

7) the diffusional couple shown in Fig.l1 was formed by

~—

two alloy pellets (d =A =0.05 ¢m) having compo-
sition: Fe-52Ni and Co-51Ni in wt%.

Figs.1 and 2 show the initial distribution and the
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measured and calculated concentration profiles. The
interdiffusion process generates the diffusional structure
of initially uniform nickel distribution, i.e. uphill
diffusion of nickel, Fig.1. It may be noted that in the
finite system (a finite diffusional couple) its life time
is limited and after 131 hours annealing time diffusional
structure diminishes. The experimental data and simu-
lations show that homogenization time of the ternary
diffusional couple is controlled by the transport of the
component showing the lowest diffusivity.

The used here mathematical method allows for and
arbitrary initial distribution of elements. Thus one can
select very complex initial conditions, e.g. highly non
regular initial data. In Fig.2. the interdiffusion in
multilayered metallic plate is shown (total thickness 1
mm). The change of composition at the ends of the
diffusional couple is observed. These results show that
interdiffusion in some closed system changes con-
centrations of components at the boundaries.8" The
DYFSYM software used to compute evolution of
densities was written in Borland C++ v.3.1. The demo
version is available from the authors.!¥" All computations
were carried out using IBM-compatible PC Pentium 100
MHz. As with any numerical approach, the speed of our
method depends on how much accuracy we need. The
computations of evolution of the ternary system, Fig.1
and 2 (the parameter of the approximation (N =40)

required 10 and 20 minutes, respectively.
Discussion

The transport processes usually involve out- or
inflow of a single or all elements from the system (e.g.
the coating). The presented generalized Darken model
of interdiffusion for the multicomponent, bounded system
allows for simulation of such processes. The appropriate
boundary conditions can be given for an open and also
bounded systems and, can be applied for interdiffusion
in wide selection of chemical processes.®10° The idea
of generalized solution and its practical use for numerical
calculations was introduced and showed. The experi-
mental results and results of numerical calculations of
interdiffusion in Co-Fe-Ni alloys were shown.

The model presented allows for many conclusions
to be derived. The key massage is a great potential of
generalized Darken model of interdiffusion in describing

the mass transport in solid solutions. We show that
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modern mathematics now-days allows for the modelling,
practical calculation and the better understanding of the
real transport problems.
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