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The Equation of Motion and Conservation of Energy
in Open Systems

Marek Danielewski
(Received October 6, 1992)

The new possibilities arising from the quantitative description of the dynamics of heat and mass

transport are presented. The new postulated form of the momentum flux is applied in a general case
of transport in continuum (homogeneous multicomponent system in nonequilibrium). This approach
results in:
i) conservation equations in a viscous, compressible media (the equation of motion and the internal
energy conservation equation), the simplified formulas for ii) “ideal compressible media (showing
negligible both, diffusivity and viscosity) and, the equations of motion for the isothermal transport
in iii) multicomponent solids and gases. It is shown that, in the non-viscous compressible medium,
the I law can be derived from the postulated formulas. The conservation equations and appropriate
expressions defining the fluxes of mass, momentum and heat, allow a quantitative description of
a nonreversible process to be obtained.

The presented phenomenology emphasizes i) the limitations of the second Fick's and Fourier's
laws and suggests ii) the directions of practical applications of this phenomenology in the development

of the new experimental methods.

INTRODUCTION

The more experienced reader may skip the first
section. The concepts presented it are recognized by
several authors.

For a majority of chemists, the equation of motion
sounds almost like a mystery. It is hardly surprising
though. The two most successful (mainly in hydrody-
namics) forms of the equation of motion {(ME, i.e. the
mathematical formula of momentum conservation in
continuum) are almost useless in chemistry. They are
not even being mentioned in a majority basic courses
of the physical chemistry.

The cause of such a status (of the theory of

transport in chemistry) is simple in fact. The math-
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ematical theory of the Navier-Stokes equations (N-S)
is not complete”. The well-known Euler’s equation is
inadequate when used in majority of real systems (e.g.
in the case of mass transport in solids). Thus it can
be formally questioned whether these equations really
describe general flows. Finally the missing proof of
uniqueness of the N-S equations and mathematical
problems in their practical applications, all of them
wholly and very effectively discourage chemists in
using them. Consequently chemistry does not have any
decent formula that would allow to establish a success-
ful link with mathematics (and physics), formula which
would allow a more advanced mathematical modelling.

In some very limited situations the Onsager rela-
tions have a practical value. However unless the
number of unknown coefficients can be reduced, the
formalism becomes essentially useless from a practical
standpoint. Author disagree with the decp underlying
interpretation of the minimum entropy production and
thermodynamic coupling. The thermodynamics of open
systems has to be better understood before further
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Fig. 1 The imaginary, elementary volume element dV
at position r (position defined in a laboratory,
i.e. external, reference frame, ERF), the me-
dium moves relative to the ERF, e.g. drifts with
local velocity UVt 2 (at the -same position

r).
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Fig. 2 The interdiffusion process between O' and
0!8, the container is divided into two parts by
the permeable membrane (1). The container is
positioned on the torque suspension which
position is determined by its initial, #(O%),
centre of mass (a). The interdiffusion process
in progress, r>0, as the container mass centre
position is a function of time, the time depend-
ent distortion from the initial position follows

(b).
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development of this rule. The basic assumption of
rational thermodynamics about existence of entropy in
nonequilibrium is not yet clear and, in particular it can
not be applied to open (the mass exchanging) systems?).

Why the equation of motion is such a necessity?
Take any medium (fluid, gas, solid or their mixture),
the mixture it is in nonequilibrium and surrounds an
observer (or it is fixed, e.g. in a chemical reactor). In
general in such an open system the number of coupled
processes occurs. In order to describe entirely such a
system, Fig. 1, we ought to know (to calculate and/or
measure) the temperature, density {or any combination
of p, p and T) and local velocity of the medium, v.
The velocity is a vector quantity [v (vx, vy, V)] thus,
we do always have five unknown parameters (two less
in unidimensional systems). Formally, unless the
number of equations equals the number of unknown
parameters, the quantitative calculations are not possi-
ble. This basic rule of mathematics invariably holds.
However, situation is not hopeless.

The chemical systems must obey the following
conservation laws: i) the law of mass conservation (the
mathematical formula of this law is called the equation
of continuity), ii) the law of energy conservation* and,
iii) the Jaw of momentum conservation (i.e. the equation
of motion, which is a vector equation and, consequently
is equivalent of three scalar equations). Thus, if the
equations are correct, their number balances the number
of the unknown parameters and any problem can be
quantitatively solved.

There is another commonly used method. The
experiments might be arranged in such a way that the
movement (drift) becomes negligible. Is this an effec-
tive solution?

The mixing process is one of the simplest chemical
reactions studied. Let us take the two oxygen isotopes
(O'8 and O'%). They can be fixed into a container in
which we have an permeable membrane which avoids
mechanical agitating but does not affect inter-diffusion
(mixing), Fig. 2(a). The container is then situated,
exactly at its centre of mass, on some sensitive torque

*In some limited situations the II Fick’s and Fourier’s
laws are sufficient in describing a quasi-stationary
processes. These formulas represent the retarded forms

of the general conservation equations.
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suspension. What can be measured now? All energetic
effects are negligible. In the same time it is evident
that the container which once was stable [at the very
beginning of the reaction, ¢ = #O*)] will start to fall
down to the right side, Fig. 2(b). The diffusion will
affect the centre of mass position and unless the effect
is compensated by any external forcing (e.g.
microbalance) the stability will be lost. The movement
starts and, e.g. we should like to know the container
velocity changes as a function of time. It is evident that
the same effects occur during nonuniform heating,
interdiffusion in solids, reactive diffusion and so on.
These effects, instead to be avoided, can be used as
a source of the valuable information.

The author’s approach has been stimulated by the
Darken’s concept of drift velocity in solids® and by
the Holly’s model of the free fluid®. If the diffusional
transport in solids can results in the local production
of the drift velocity® hence the analogous processes in
fluids and gases are obvious. The local accumulation
of heat energy in solid (in all media in general) can
as well result in solid local expansion (i.e. the drift
production process). Accordingly any form of transport
process within a medium which affects the local
properties of matter can result in drift generation.

Some analytical technic (taking advantage of such
mechanical movement) have been already developed.
The measurements of the propagation rate of the heat
waves in solids, e.g. utilising two lasers (as a heat
source and detector) allows the simultaneous
measurements of thermal-conductivity and mechanical
properties.

The tremendous progress of the most experimental
technic will tell many other practical experimental
possibilities. However to do this it is necessary to have
a complete set of equations. Otherwise one will always
calculate an “effective values” (What frequently means:
we do not know exactly what’s going on here).

Using the new phenomenological description of the
energy and momentum transport in continuum®, the
paper presents an extended analysis of the mathematical
formula describing the global energy balance which
results from this approach.

The notation used follows actual evolution in ap-
plied mathematics (as well as non-reversible thermo-
dynamics) and allows the physical interpretation of ali
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the formulas. Whose not familiar with such a formulas
should only remember that the divergence (Div or div)
is the difference between amount of any arbitrary
quantity going in and out of the elementary volume (it
does not depend on the choice of the reference frame,
i.e. div (in any external frame of reference, ERF) = div
(in IRF). Thus the negative divergence means the
balance is positive, i.e. more stay in the volume element
than goes out. Than there are gradients (Grad or grad),
again they do not depend on our position or movement
(on the choice of frame of reference) and describe the
distributions of components and velocities, as well as
represent an internal forcing. The last two symbols used
in the following sections there are two time derivatives:
i) the so called Euler’s derivative (9/3¢, which tells how
the arbitrary quantity changes with time in any arbitrary
laboratory reference frame, e.g. in the ERF which is
shown in Fig. 1) and ii) the substantive derivative
{D/Dt, which informs how the same quantity depends
on time in the internal reference frame, e.g. when one
becomes an internal observer (“an idealistic, utopian,
observer” who drifts with the medium and the same
time does not “disturb” any of the local processes,
neither affects the medium local properties, e.g. local
density). This last form of the time derivative allows
to simplify formulas and, is the key factor in under-
standing open system (Note, that all processes in the
IRF do not depend whatsoever on our choice of external
frame of reference, ERF, i.e. on laboratory frame of
reference).

In most practical applications, the calculations are
done using a numerical methods, therefore there’s not
necessary to know and to discussed them. Again, the
key factor in using the precisely defined formulas, is
to understand their meaning and formulate the proper
initial-boundary value problem. After that the math-
ematics will do the job.

The essence of presented phenomenology is:
i) the standard definition of the mass flux vector, which
is a sum of the diffusional and drift flows (i.c. a first

order tensor, where ji = gp):

i = Ja; +piv
mass flux, | _| diffusional flux, | , | drift flux, M
ERF ERF=IRF ERF
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where v is a local medium drift velocity and, the ERF
and IRF denote the external (i.e. laboratory or observer)
and internal reference frames, respectively; and

ii) the postulated form of the momentum flux tensor
(i.e. a second order tensor):

7 = J LN + (p i v,‘)U
momentum flux
monentum due to viscosity, momentum drift

momentum diffusional flux tensor, ERF

flux tensor, ERF=IRF

flux tensor, ERF |
V)]

Upon comparing eqs. (1) and (2), it can be seen that
the postulated form of the momentum flux is based on
the concept that the flux of this conservative property
(momentum) can be treated as the mass flux in con-
tinuum. It should be mentioned that the all classical
treatments assume that the drift flow of momentum
equals (p;v) u, i.e. the momentum is transported by
the centre of mass velocity, u®.

The proposed phenomenology relays on a i) unified
“diffusional approach” to the transport in fluid (in all
media in general” and a ii) fundamental uniqueness of
the two local average velocities, the medium drift
velocity and the diffusional velocity®.

The work is an attempt to unify the heat and mass
transport phenomenology, to narrow the gap between
the physico-chemical statements and precise mathemati-

cal formulas.
Definitions

Transport is considered in an isotropic continuum
in nonequilibrium* (e.g. in a fluid, gas or solid). In this
system the state variables (local velocities, temperature
and concentrations) are assumed to be continuous
functions of the space coordinates and of time. It is
always understood that the all variables in this
nonuniform single-phase system are averaged in the
elementary volume at the position r and time ¢, Fig. 1.
The vector » denotes the position of the small element

#

*In the case of irreversible phenomena, the system is
never uniform throughout. It consist of an infinite
Thus the
is defined thermodynamically as

number of phases. continuum in
nonequilibrium
nonuniform single-phase system. A discontinuous sys-

tems is defined as multiphase or heterogeneous system.

&

of volume dV. This elementary volume is infinitely
small compared to the dimensions of the whole system
but large when compared to the mean-free path length
of the moving components. Such a medium (e.g. fluid)
can be called continuous or, thermodynamically,
nonuniform single-phase system. The discussed trans-
port phenomena are restricted to systems which are
close to equilibrium, i.e. it is meant that only the linear
derivatives of the variables are important.

The multicomponent system is composed of n
chemical species (components) denoted by i, i=1, 2.,
n. The fluxes can be expressed with respect to i) fixed
coordinates (in ERF) and ii) with respect to any of the
arbitrary velocity (in IRF). The mean velocity of the
ith component in the elementary volume dV and with
respect to an ERF, is given the symbol u;. The average
local density (p) is a sum of the local partial densities

P)P=2 Pi

=1

The two mechanisms general to all transport are

molecular diffusion and drift transport. Consequently
the following characteristic fluxes are defined:
1) The general flux (in ERF) of i that passes through
a plane of unit area and normal to the local velocity
vector of i (the plane is stationary and has constant
dimensions with respect to the ERF):

Ji = pi Ui 3

2) The diffusional flux (which does not depend on the
choice of the frame of reference) defines the average

local diffusional velocity of component i:
Jai = Ji (diff) = p; va; 4)

3) The drift flux (equivalent to a flow flux in liquids
or convection flow in gases) is defined by the average
diffusional flux (or diffusional velocity) and by the
general flux (the one measured in ERF):

Ji (drifty = piv = ji— ji (diff) = pi(vi ~ va) M

where u is the local drift velocity of the medium of
composition t; The drift velocity is common for all the
components and consequently from eqs. (D), (3) and (4)
it follows that,

Vi= Vg + U )

and that the defined fluxes are related to each other
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through eq. (1). Thus upon adding all the partial mass
fluxes [as defined by the eq. (1)], the total mass flux
is given by

I=pu= zjd,i TP V=PV +Pp U=), +] (drift) (6)
i=1
where jgz is the average diffusional flux in the elemen-
tary volume dV and, u and 74 denote the centre of mass
and the average diffusional velocities, respectively.
Equation (6) defines:
i) the average diffusional velocity

1 &,

Vy=— 2] di )
p .=t

ii) relation between the all defined average velocities

u=1v+ vy &)

The IRF (e.g. the frame of reference which has the
velocity equal the local drift velocity of the medium)
is associated with the substantive derivative D/D¢ (the
Lagrange operator). This is the time derivative of a local
quantity taken at the centre of the element dV moving
with any arbitrary velocity, e.g. u. The substantive
derivative and partial derivative /9 (which is the time
derivative taken in the volume dV at r, i.e. with respect
to ERF) of a scalar quantity are related by:

D = i + Ue grad 9)
Dt|, ot

We introduce at this point a useful relation (is valid
for an arbitrary quantity a);

div (au) = a divu + w-grada (10)

The above two relations for a vector quantity become

D _9 i Grd (an
Dt|, ot
Div (ju) = u divj + jGradu (12)

where the physical interpretation of all the terms do not
differs from the already presented [e.g. in the case of
a scalar quantities, eq. (9)].

The diffusional fluxes can be expressed by any
appropriate formula, e.g. by the Fickian formula:

Jei = — D; grad p; (13)
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where for a non-uniform, non-ideal medium the diffu-
sion coefficient of the ith component is its intrinsic
diffusion coefficient [in solids®] or in general, the
chemical diffusion coefficient of ith component.

Conservation of mass

The most general (and not a controversial one)
mathematical formula of this law® is called the equation
of continuity (CE). It can be derived using the general
method (the general means here that equation does not
depend on the geometry of elementary volume, which
has not to be a simple cubic volume element). Because
this general and, well known method, will be used in
deriving the other conservation equations, the complete
derivation will be shown here. The mass of ith com-
ponent in an arbitrary volume V is /p,-dV, where the
integration is over volume V. The rate of mass change
in this volume is

d ap;
= Jpav=] Zav
dtlpld [ Y (14)

The order of integration and differentiation can be
interchanged thus the above identity is always valid.
The mass changes in volume V as a result of the drift
flow, the diffusional flow and as a result of changes
in mass due to chemical reactions:

ap;
—dV=- .v;dA.f iVy;°dA +C;
_/; a ¢ A P: A px d,i i
[ mass accumulation accumulation mass change of
change in of mass as of mass as a the #h component
the volume | ={ aresultof |+| resultofdif- |+ asa result of che-
element, drift flow, fusional flow, mical reactions,
ERF ERF ERF=IRF ERF=IRF
(15)

The integral on the right-hand side (r.h.s) of the eq.
(15) is performed over the total surface of the volume
element, A. The vector normal to the surface dA is
positive when its direction is oriented outward of the
volume element, which results in the minus sign before
the integrals on the rhs. of eq. (15). The surface
integral can be transformed into a volume integral by
Green-Gauss’-Ostrogradzki theorem so that eq. (15)
becomes

[ 2iwe [ aveinav-[ avompav+[ crav (i)

ar

and can be written in the form



& X

0
f\ P: +div (p; v) +div (p; Vg - C*ldv=0
4 ot an

Providing the volume is fixed with respect to the ERF,
the integrand is zero. Thus the eq. (17) equals zero
when

3
OPi 4 div(p; v)+div(pg)-C*=0 (18)

dr
Equation (18) is the partial continuity equation in the
ERF, where C;* is a chemical reaction term (a local
sink/source of mass). In the IRF [using relations 9)
and (10)], it is:

Dp;

+p;divo=-divj,, +C* (19
D: '

v

After summing all the partial CE, eq. (19), over all i
and nothing that mass is conserved in a chemical
reaction, the CE for the medium as a whole (in the IRF)

results

Dp

+pd1vv—-2d1v1d‘ d1v2]d,—-d1v1d

v =1 i=1

20

where the substantive derivative denotes the time de-
pendence of the mass densily in the clementary volume
moving with a drift velocity v, i.e. in the elementary
volume drifting with the medium (in the IRF). Upon
combining eqgs. (6) and (20), the CE for the medium
as a whole takes the well known form

Dp

—1!| +pdivu=0 @D
Dt |

Equations (20) and (21) describe the mass balance in
the two different internal frames of reference (are
different forms of the local equation of continuity for
the medium as a whole). When the drift velocity
becomes negligible, eqs. (20) and (21) reduce to so
called 2nd Fick's law

9P _

-drvj
5 Jd (22)

Equations (1) and (3)-(21) are well known and
commonly accepted mathematical formulas describing
the mass transport in all media®. In the following

e

sections the new approach to the momentum conser-
vation is presented. The essence of this approach is the
postulate that the local flux of momentum is a sum of
drift and diffusional fluxes [analogously to the mass
flux, eq. (1)]. Except of the momentum conservation,
the further analysis will be restricted to the case of a

simple, viscous and compressible media.
Conservation of momentum

If T is defined as a momentum of the ith
component in the volume element, the momentum flux

tensor of the ith component (J;) is given by eq. (2)
\Ji = J; (drifty + J; (diff.) = (piv) v + Jvi 2)

where the first term on the right-hand-side of eq. (2)
(r.hs.) is the drift flow of the momentum in the ERF.
The momentum viscous (diffusional) flux (the second

term on the r.h.s.) can be expressed by
Jvi= -1 Grad v (23)

where 7; is defined as a partial viscosity of the ith
component. In general, the gradient of a vector quantity
is a second order tensor.

The equation of momentum conservation can be
derived from the general, already used, method. If
momentum is an extensive property of the medium and
v; is a specific value of momentum of the ith compo-

nent, the time change of momentum, Jpivi dV, is

fpun-dA f J,.+dA
prFexldv +fszmudV +fodv
1

(24

given by*

a(pv)
v ot

The first term on the rh.s. is the drift flow of
momentum out of the V through the surface of the
volume element, the second term represents the kin-
ematic forces acting on the V (the momentum exchange
due to viscosity). These two terms represent the con-

tribution from the kinematic pressure and internal

* Traditional, and commonly up to now accepted, form
of the balance equation for the rate of change of

momentum is written
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friction (the contribution, which relative to the centre
of mass, can be expressed by the kinematic pressure
tensor, []. The last term on the r.h.s.

I(p.v,
f MdV:—fpmmgdA -va,,’dA
4 ot A A
*fPtixde +fpiFim,idv *indV
v v v

Thus the principal difference between the two formulas
is the result of defining eq. (2) and, can be seen upon
comparison of the first terms on the r.hs. of the eq.
(24) and the classical, written above formula. In the
traditional treatments it is always postulated that mo-
mentum is transported by the local average velocity, u;.
The traditional approach results in the equation of
motion in the form [an scrupulous reader may return
to this point after following the derivation of the
differential form of eq. (24)I:

n
p-D—u =-DivYy J,;+pF - gradp

D: |, o1
Thus the traditional equation of motion does not contain
[compare also eq. (31)] the Div (juu) term.

Physically it means that, the motion as a result of
diffusional matter transport is excluded in the all earlier
approaches. Namely such a classical formulas do not
allow to calculate: i) the time dependence of the
Kirkendall effect (in solids), ii) the flow induced by
the mutual diffusion in liquids and, iii) the diffusion
induced drift (“convection™) in multicomponent gas
mixtures.

The final consequence of such a restriction (in the
classical formulas of the equation of motion) is their
bypass in chemistry and in the majority of present
treatments on the diffusional mass transport, e.g. in
solids, represents a contribution from the rate of
momentum increase per unit volume, v, as a result of
momentum exchange with the other diffusing compo-
nents. Because the total momentum is conserved: 3, y; =
0. The external and internal forcings are represented by
the third and fourth terms, respectively. The internal
forcing represents contribution from the internal poten-
tial energy due to molecular interactions and conse-
quently eq. (24) can be written in the form
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f ) f f
———dV=-f povedA - J,;+dA
v ot A 4

+] PFeudV +| grad ~1dv
v A oV
+fy‘-dV
v (25)

It follows that the internal forcing can be expressed by
the gradient of the partial hydrostatic pressure of the
ith component (p;), where the local hydrostatic pressure

is: P=Z p; and,

i=1

d d UL, (26)
ad p; = - gra
grad p g v

where Uy, is the intenal energy of ith component. Thus,
after transforming the surface integrals of eq. (25) to
volume integrals by Gauss' theorem and nothing that
the resulting integrand is zero, the equation of momen-
tum conservation of the ith component becomes

a(pz Di)

> =- Div(p; v, v)-DivJ, +p,F,
- ,

@7
-gradp; +7v,
In the case of a n-component nonuniform single phase
medium, the equation of momentum conservation for
the medium as a whole (i.e. equation of motion, ME)
is obtained upon adding all the eqs. (27), viz.,

a(g:t) =-Div(puv)-DivyJ,; +pF o -grad ¥ p; (28)
=1 =1

The ME can be rearranged to

p a—u+U'Gradu
ot

+u

9, divip v)
dr

:_Divzjv,i + P Fexl - gradp

i=1

2%

which upon substituting egs. (I11) and (20) becomes
finally:

D - e
pFI:- =udivj,-Divy J,,+pF,, -gradp (30)

v =1

Upon expressing the equation of motion relative to the
centre of mass velocity it takes form



w X
p_lzi =Div(id u) - DlVi Jvi+pFex1' gradp
Dt |. =1 ' @D

Thus the net force acting on a volume element is a
results of i) the outflow of momentum carried by the
net diffusional flux, ii) the net inflow of momentum
into the volume element due to the nonuniform field
of the drift velocity within a medium and, iii) the
internal and external forcing. The momentum flux is
a second order tensor completely determined by the
fluid (medium) properties and by the velocity and
density fields. Equations (31) can be written in the

standard form

+ Div [T+ grad p = pF (32)

,Du
Dt |,

where the kinematic pressure tensor is given by:

=1

H=21v,i'(2jd,i)u=-]v'jdu (33)
=1
In the case of a single component compressible fluid

the kinematic pressure tensor has a form
O=Jv-Jau (34)

Note that:

1) when the ME is written for a single component,
ideal fluid at equilibrium (where the velocity, tempera-
ture and density gradients are absent from the fluid),
the contribution to [T from viscous and diffusion effects
vanishes and [T = 0. The ME, eq. (32), becomes, in

this case,

P%':— T grad p = pF oy (35)
which is well-known Euler’s equation for an ideal non-
compressible fluid.

2) In the simplified case of an isothermal
diffusional transport in solids (namely when the external
forcings stresses and plastic deformation are negligible
when compared to the chemical! forcing) the ME, eq.
(30), reduces to

p2% | —udivj (36)
D, ‘

The derivation and the practical application of this form

# Hl

E

of the ME has been already published®.

3) In the case of an ideal gas atmosphere the
hydrostatic pressure term vanishes (8UYdV = 0) and the
ME, eq. (32), becomes:

pP% | DivII=pF,, 37

Dt |,
The derived equations (CE and ME) allow to obtain

a very convenient secondary relations.

Rate of change of potential energy. The potential

energy  of the medium which moves in the field of

a conservative external force Fex is defined by
Fex = — grad ¥ (38)

For the example considered here (i.e. stationary external
force field) it is:

v _

9
ot (39)

The equation for the change of potential energy is
obtained by multiplying the equation of continuity [eq.
(21) written in the ERF] by v, with the result,

2 .

ﬂ =-ydiv (pu) (40)
ot

and in the IRF [using egs. (9), (10) and (21)], it is

p 2V —pu-grdy @1
Dty

Rate of change of kinetic energy. The ME allows.one
to obtain the rate of change of kinetic energy. If the
ME, eq. (32), is multiplied by u, it becomes t he
equation of the kinetic energy conservation,

1 Du’

;p D:

=-u+Divil+pu+F  -u-gradp (42)

u

In general the kinetic energy is not conserved as a result
of the energy dissipation due to the diffusion and
viscosity (kinematic pressure tensor, I1).

Conservation of internal energy

In deriving the mathematical formula of internal
energy conservation it is assumed that: i) the pressure
and internal energy distribution may be determined
within a medium, ii) the work and energy (heat) transfer

of the process formed by Iwo successive processes is
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the sum of both processes and, iii) it is possible to
connect two arbitrary states by some process.

If uy is defined as the internal specific energy per
unit mass (it contains contribution from the internal
thermal kinetic energy and from internal potential
energy due to molecular interactions), the equation for
the conservation of internal energy can be derived from

the already used general method. The time change of

f a(”")dv=
v 9t

ur is given by

-f pu,u-dA-fj“-dA-fpdivudV-f H-Gradudv-f P v, gradydV
A JA 14 v v

- work per-

thermal :‘9:: g:x‘fho; worl&lperfc;nned formege in
flow of energy volume ele- 01 the volume the volume
intemal | | | “aux. |+ ment by the element by the |, | o1oment by

energy, BKF; hydrostatic kinemalic external

pressure, .

IRF presure, ERF-IRF forcing,

ERF=IRF - ERF=IRF

(43)

where the heat is defined as the entity which flows
between regions of different temperatures solely be-
cause these regions are at different temperatures. There
is no unique way to split the heat flux into the purely
conducting term, jg, and the diffusion term (representing
the energy flow due to the diffusion of mass). The
formal eq. (43), however, is sufficient to define Jg as
a term representing the energy flux due to all mecha-
nisms except the energy flow due to the mass transport.
The coefficient of thermal conductivity is defined by
the relation

Jo=-—Xgrad T (44)

where A is the coefficient of thermal conductivity.

Thus, after transforming the surface integral of eq.
(43) to volume integral by Gauss' theorem and nothing
that the resulting integrand is zero, the equation of
internal energy conservation becomes
d(p ur) ,
i) =-divipuuw) - divj , -p divu - I1 » Grad u

at
(45)
“P Uy grad y

This relation, with egs. (9) and (21), becomes finally
in IRF:

DuI

Ldivi, -2 diva- L Gradu
Delu p p P
a *grady
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The internal energy is not conserved because of the
presence of the terms I1-Grad u, p div u and p vs-grad
Y, which represent dissipation of the kinetic, internal
and potential energy, respectively.

When the viscosity, diffusion and drift velocity
(medium expansion) are negligible the equation of the
internal energy conservation reduces to the formula
which is equivalent of the 2nd Fourier’ law

du, 1
o

p
Equation (46) is formally the analogue of the classical
formula®. Yet, the essential benefit of the present

divj q (47

treatment results from the explicit definition of the
kinematic pressure tensor.

In many experimental situations the Jocal pressure
is an interest. In open systems the measurable quantity
is the local hydrodynamical pressure. The formal defi-
nition and the resulting method of determining this
quantity is as follow.

Calculation of the local hydrodynamical pres-
sure. The hydrodynamical pressure at a fixed moment
t can be defined using the Hodge decomposition of the
vector field to the solenoidal and conesrvative parts
(namely it is a potential of the conservative part of the
difference between a total force and an external force
acting on a medium at the moment ). Thus the CE and
derived conservation equations completely describe the
transport.

The self-consistency of the derived equations with
the thermodynamic aspects of the transport pehnomena
is discussed in the last section,

DISCUSSION

Conservation of the total energy. The total energy is
defined as the sum of three terms; the kinetic energy
172 u?, the specific potential energy resulting from the
external, conservative force v, and the internal specific
energy ur:

I >
e = ? u- + uI +y
where the term u; contains the contribution from
internal thermal Kinetic energy and from the internal
potential energy due to the molecular interaction.

Because the equations for the potential energy, kinetic

5 —
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energy and internal energy have been already derived,

thus the conservation for the total energy is obtained
upon adding egs. (41), (42) and (46), with a result:

p%ﬂ =-div(pu+H-u+jq)-pnd-grad\y (49)
t

u

Upon splitting the kinematic pressure tensor into two
parts [equation (33)] it becomes finally (in the IRF):

D
p =%

0| =-avu i, +]u-j u”)-J 4 grad ¥ (50)

Conceivably contrary to common experience, the
transport in gases is a most complex process. In general,
none of the elementary processes (compressibility,
diffusion and viscosity) becomes negligible and, as a
consequence, only total energy is conserved.

In order to show the capability of the derived
formulas in description of the transport, they will be
markedly simplified now. The target is a detailed
analysis of the transport in condensed compressible
medium (e.g. simple fluids, amorphous solids, some
poly-crystalline materials). Negligence of the
dissipative processes in such a medium will result in
a time independent, local (in IRF) formula of internal
energy conservation. It will be shown that in such a
“semi-ideal” media the I law results (i.e. I law is a local,
time independent, formula of internal energy conserva-
tion in a non-viscous compressible media).

Conservation equations in a condensed medium.
The further discussion will be restricted to the liquids
and solids. In such systems the molecular transport
(diffusion) is always a function of local gradients. Thus,
eqgs. (31), (46) and (50) can be written in the form (the
all terms in which the differentials are multiplied
become negligible):

p2L| —udivj,-DivJ,-pgady-gadp (D
tlu
Du, div i di
=-divj,-pdivu 52
p YD q (52)
De . . . 2 ...
p-D— =-div(u+jg)-u*DivJ, +u divjg4 (53)
[

When diffusivity and viscosity are negligible (trans-

# Ol

.
=
port at low temperatures or some fast processes) the

conservation equations can be further simplified to:

PB5 =-p grad y - grad p (54)
Dt

The assumption that medium is at a close to
equilibrium conditions, allows one to assume that the
medium properties can be expressed by an equation of
state. The arbitrary equation of state is convenient here

to write in
Du, div j,-pdi (55)
p =-divj,-pdivu
Dt |u d
p—Il))—e =-div j o -div(pw) (56)
tu

the form of a quasi-linear relation between the density
and pressure:

p=KpT p=Kp (€]

where K =

J m? .
" = represents the internal energy

g s?

per unit of mass (and in general can be a function of
both the density and pressure).

The pressure, eq. (26), can be expressed now as a
function of local variables which are used in the derived
equations:

oU; a(p u;V) 2 ou;

E-ePa (58)
av oV ap

and consequently from egs. (57) and (58) it follows

0 I g (59)

op
gradp = p gradK + K gradp (60)

Equations (59) and (60) allow to express the pressure
gradient as a function of the local variables:

0
gradp:pgradK+p—igradp= 61
ap
=p grad K + p grad i,

Thus the chosen quasi-linear relation between the
density and pressure allow, eq. (61), to write the

Netsu Sokutei 20(1) 1993
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equation of motion and the internal energy conservation
equation in the Newtonian form:

D
L] = grad (K +uy + ) 62)
Dt (.
Du, 1 .. . .

= Laivj, Kdiva (63)
Drl.

It is evident that when we know both the boundary and
initial conditions the distributions of density, tempera-
ture and velocities can be calculated.

The equation of the total energy conservation in the
discussed case can be written in the form:

Del o Lgivkpuy-Ldivi, =

Dri. p P

= Luegrnd® p)-Kdiva-Ldivj, (64)
P p

The equation of kinetic energy conservation, eq. (42),
in the discussed case reduces to:

D(;—uz)
A cuegrndy- Luegndk p) 69
D: u p

Thus, upon substituting into the first and second terms
on the r.h.s. of the eq. (64), the derived relations [egs.
(65) and (21)] the continuity equation of the total

energy in the medium becomes

Du[+;—u2+\p D(;—uz)
= +u e grad
D: u D: “ gRcy
NS R
p Dtlu p
(66)

Upon taking into account the equation of the potential
energy conservation, eq. (41), it finally reduces to:

Dul
D:

(67

K Dlnp

1 .. .
- —divyj
u D: 4

“ P
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Thus in the IRF, for an arbitrary time period &, it is:
du; =K 6 1Inp+8g

(68)

du; =38 w+8q
It follows that in the compressible media (when dif-
fusivity and viscosity are negligible) and in the IRF the
derived formulas result in the classical formula of the
I law. In the other words, internal energy is conserved
in the media in which dissipative processes are neg-
ligible.

In the ERF the equation of total energy conservation
reads:
dy dlnp 1

-K +—divj =u+(K gradIn p - grad u;)
dt dt P

(69)

SUMMARY

The transport in the viscous, compressible media
in the field of the conservative force, is described by
the following conservation equations:

D
2 +pdivu=0
D: |,
Du .
p—1 +DivIl+gradp =-p gead y
Dt .
Du . .
p—l_—)-— +pvgegrady+pdive+I1+Gradu=-divj,
[

where the equation of state relates the internal specific
energy, density and temperature. The hydrostatic pres-

sure and the kinematic pressure are defined by:

=y
M=J,-j,u

The fluxes of mass, momentum and heat can be
expressed by any appropriate formulas, e.g.:

Jai=pg;=-D,grad P



E #
]y_;=—T]iGrad‘l)
jo=-hgrad T
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