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The Effect of Interactions in Polymer Blends Studied
by Monte Carlo Simulations
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Interactions play a decisive role in polymer-polymer miscibility. However, direct elucidation

of interactions from thermodynamic mixing properties is experimentally cumbersome because

of high viscosity and the glass transition temperature (Tg) effects in polymer systems, and

because there are theoretical problems attributable to its mean-field approximation. Therefore

we are interested in Monte Carlo (MC) simulations which overcome some of these restrictions

and are an alternative to the experimental and theoretical approaches.

simulations are available for only a few model systems.

Results of such
We present the results of three

applications of the MC method to polymer blend systems.

Introduction

The
polymer blends and the control of their mor-

preparation and processing of new

phology requires a detailed knowledge of the
thermodynamics of polymer mixtures. Itis well
known that favorable interactions are a pre-
requisite for miscibility in heteropolymer blends
because of the very small entropy of mixing in
The
heat of mixing (&Hp,) of a polymer system

high-molecular-weight polymer mixtures.
then becomes a direct measure of favorable
interactions. There are, however, experimental
obstacles that prevent direct measurement of
AHpy

polymer systems retards attainment of equilib-

For example, the high viscosity of

rium; also there can be a Ty intervention which

affects the mixing-demixing transition. Although
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it is possible to overcome these difficulties!) in
measuring AHy, by using low-molecular-weight
analogue systems or Hess’ law calculations for
experimental enthalpies of solution for the
blend and both pure components, few results
are available.

but

situation exists in the theoretical treatment of

A similar somewhat more favorable
the thermodynamics of polymer blends. Equa-
tions derived from meanfield (MF) theories,
which are extensions of the classical Flory-
Huggins (FH) theory, can be fitted to experi-
mental data to find the phenomenological
interaction parameter X. This parameter re-
presents an average over aH interactions and, to
a large extent, absorbs other effects such as
those associated with the equation of state,
composition, and chain length. The problem is
that MF theories assume random mixing and do
not account for correlations in chains, that is,
chain connectivity.  Deviations from random
mixing are greatest for the most favorable
interactions.

Because of the experimental and theoretical

difficulties, we have studied MC simulations as
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an alternative to these approaches. This method,
using the power of a fast computer, does not
require the assumption of random mixing and
can be formulated to include correlations within
and among the chains, We present below three
examples of studies of the thermodynamics of
polymer blends using MC simulation techniques.
The first example concerns the estimation of
the relation between the phenomenological x
parameter and microscopic interactions. The
second example is the evaluation of the mixing-
demixing problem in a copolymer/homopolymer
blend; and in the third example we examine the
effect of interactions and blend composition
on the size of polymer coils in the system,

The mixing-demixing problem in copolymer
containing systems has been the subject of
numerous studies, and over the past few years
much progress has resulted from the conceptuali-
zation of an intramacromolecular “repulsion” or
“dilution effect2:3),

unambiguous poor mixing of polymers have

Early conclusions about

been reconsidered in light of this effect, and
miscibility curves have been calculated to show
the proportions needed for preparing miscible
blends. Thus, in certain blends miscibility occurs
as a result of repulsion between comonomers
of a copolymer and the consequent favorable
mixing with the other polymer which dilutes
the unfavorable contacts in the system. Mis-
cibility may be observed even in systems in
which all binary interaction parameters are
The method has been

blends of

copolymers, randomly modified polymers%3),

unfavorable to mixing,

successfully applied to random
and systems in which homologous series of
homopolymers are treated as copolymers3.6),
The method provides a way to derive segmental
interaction parameters between different mono-
mers of the mixture from miscibility data. This
concept has provided a very useful way to
represent the data, and new parameters have
appeared. It provides a basis for interpreting
real data similar to the successful group con-
tribution schemes that predict thermodynamic

behavior of low—molecular-weight mixtures. To
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obtain more extensive insight in to the problems
involved, we have used an approach different
from the original mean-field copolymer theory,
We have
studied this problem on a model Ay By »/C blend,
using MC simulations to obtain insights indepen-

namely, MC computer simulation.

dent of mean-field approximation. Most im-
portant, by this method we can observe the
interaction coefficient of the blend not only at
the miscibility boundaries studied by mean-field
copolymer theory?:3) but also within miscibility

and immiscibility regimes.
Thermodynamics and MC Simulation

According to FH theory, the free energy of
mixing (AGp,) per unit volume of a binary
polymer system is given by the familiar form:

AGm ¢A

kT na

0]
Ing + —B Ingg + xpady (1)
B

where ¢; is the volume fraction of a component
and n; is its degree of polymerization, and x
is the interaction parameter.  The simplest
interpretation- of the interaction parameter is
through an interchange energy fexp = exp —
(€aa + €pp)/2, since x = LeaB(Z — 2)/kT, where
€5 is the relevant segmented interaction energy
and Z is the coordination number. Furthermore,
we define the reduced interaction energies as
ej = €;/kT. The critical condition for demixing
occurs when x reaches the value

Xe = % . for the simple case np =ng=n (2)

For the random copolymer/homopolymer blend
AxBj 4 /C, the effective X parameter in the cor-

responding expression for the free energy of
mixingz) is

Xblend = XXac t (1 — X)Xpc — x(1 —X)Xap (3)

This expression shows that miscibility (x < X.) s
possible even in systems in which all the seg-
mental interaction parameters are positive. By
using Eq. (3) and the corresponding x., we can
evaluate the segmental interaction parameters
X;; from experimental miscibility boundaries
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as a function of composition x. The number of
boundaries must be equivalent or greater than
the number of independent ¥;; in system.

MC simulation provides insight into these
systems in two ways. First, simulation is an
independent method that is free of mean-field
approximations, so it enables us to account
both for connectivity of monomers within the
chains and for concentration fluctuations due to
nonrandom mixing. Second, this method is a
useful supplement to the standard copolymer
theory because it enables us to investigate
Xplend OVET the complete polymer composition
range. This flexibility allows us to see whether
Xpend Dehaves according to the quadratic mixing
rule in equation (3) over the total composition
range 0 < x < 1. In other words, we can deter-
mine whether the segmental interaction para-
meters X;; obtained from miscibility boundaries
at two copolymer compositions accurately
represent X;; over this range.

The MC methodology used here has been
We

used a cubic lattice of L x L X L sites with

described in an earlier contribution?.

L = 22 in examples I and 1. For copolymer/
homopolymer blends in this study, a planar
22 was used. Use of

the two-dimensional system does not affect our

square lattice with L =
findings qualitatively. (Note that the original
FH theory does not differentiate between
systems of different dimensionalities.) In ex-
amples 1 and T, the blend composition was
always 1:1. Composition was varied in example
111,
used throughout.

Chains with 20 segments {monomers) were

The simulation of copolymer chains used
here is similar to that used previously® to
assess miscibility behavior in copolymer blends
with single interactions. At first, a linear
statistical AyBpy copolymer with 20-segment
chains was generated in a step-by-step procedure
according to ideal statistical copolymerization
kinetics. The probabilities for the addition of
an A or a B segment in cach step were pa for A
segments and pg = 1 — Pa for B segments.
These probabilities were held constant during

v47

Al

“copolymerization.”  This procedure produced
an assembly of AxBix chains in which the
average of x was close to pa. The computation
allowed for the generation of a monodisperse
system.

Each lattice site contained either an A, B, or
C segment or a void. An overall void fraction of
0.0909 allowed for chain motion to equilibrate
in this incompressible system. During the
computation, periodic boundary conditions were
imposed on the lattice. In order to minimize
finite-size effects, we chose the dimension of
the lattice so that it always exceeded the
equilibrium dimension of a single chain. The
initial configuration for the simulation of the
mixture was a completely ordered arrangement
of parallel chains in an alternating order of blend
components. For the simulation of the copoly-
mer, we filled the lattice with copolymer chains
alone, but used the same void fraction, and then
imposed interactional constraints on the system.
Whenever i and j segments occupied adjacent
sites, a single interaction energy €; was counted
in the total energy of the system;ij = A, B, or C.
The total energy of each configuration was

E =€eapNap +€acNac *+ €BcVBC (4)

with NV being the total nearest-neighbor hetero-
contacts in the system. The interaction energy
between a segment and a void is defined as zero.
We allowed for 4 x 10° reptation moves to
equilibrate the two-dimensional system and up
to 2 x 10® for the three-dimensional systems
for each state. Reptation is a well-established
algorithm for equilibrating systems at high
densities. For each move, both an intrachain
and an interchain excluded volume effect were
operative on the basis of site occupancy. Note
also that when the copolymer chain reptates,
we must evaluate the changes in energy along the
whole chain rather than only at the chain ends,
as is the usual practice fora homopolymer chain
undergoing a reptation move. New configur-
ations were accepted or rejected in thermo-
dynamic averaging, according to the well-known

rules of Metropolis, which samples the states
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with correct thermodynamic distribution pro-
portional to exp(-E/kT): After each attempted
move successfully passed the steric restrictions,
the move was accepted only if
—AF

exp —o— 2§ (5)
where A is the change in total energy before and
after the attempted move and £ is a random
number between zero and unity. The averages
were then calculated as arithmetic averages over
acceptable configurations. Each time a configur-
ation was rejected, the previous configuration
was counted again in the average. Equilibration
of each state was preceded by an initial inter-
mixing period during which all interaction
energies were held equal to zero. As a major
thermodynamic variable, we calculated the
equilibrium number of three types of hetero-
contacts in the blend: Naop, Nac, and Npc. This
calculation also yielded a net interaction para-
meter Xpjend-
the mean-square end-to-end distance <R*> of

In example HI we also evaluated

the polymer coils.
Results and Discussion

Example I. A homopolymer blend
Figure 1 depicts the average number of A-B

heterocontacts per chain plotted as a function

N
3
T
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o
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o
T

heterocontacts, N,
L 1
I |
S n
Interaction parameter, x

Equilibrium number of

'

1t t I ! I
-04 0] 0.4

Interaction energy, A

Dependence of the number of A-B
contacts in the system per chain and of
the x parameter on the nearest-neighbor
interaction energy esp. Reprinted,

with permission, from ref. 7.
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of interaction energy esp. From these results,
we can find the relation between the pheno-
menological interaction parameter x and the
microscopic interaction energy esp. We can
represent the interaction free energy of mixing,
AGigt, in two ways. The first comes from the
MF expression of FH theory, which assumes
that the number of heterocontacts is pro-
portional to the product of the volume fractions
of A and B, ¢4 and ¢g. In this representation,
the interaction is varied through x and the
number of contacts is fixed. The second comes
from MC results, where the total number of
contacts Npp depends on the microscopic
ENergy €eaR.,
Equating these two expressions yields

interaction which is constant.

AGint _ _ eap/NAB
kT X¢adp = (6)

where N is the total number of sites in the
mixture, including voids. The resulting depen-
dence of x on epp is also shown in Fig. 1. The
dependence is seen to be linear in the miscibility
regime, as expected from the classical relation
X & HEAB-
the relation between the phenomenological x

From these calculations, we obtain

parameter and the true molecular constants
€ap- In the product esg/NaB, the free energy
Note that the

entropy of mixing is included in the evaluation

change is included in Npg.

of Xpjena through the MC sampling algorithm.
If it were not so, then even an infinitesimal
repulsive interaction would lead to a complete
demixing. However, nonzero Npp is always
Using Eq. (6), we find the value of

X. corresponding to the

obtained.
mixing-demixing
transition centered at eap = 0.05 to be 0.11, a
value that agrees with the value of x_ = 2/n = 0.1
predicted from FH theory.

Example I. Evaluation of interactions in a
copolymer/homopolymer bland

The primary results of our study of the

AxB1x/C systems are again the equilibrium

numbers of the three types of contacts in the

mixture. We prefer, however, to show our
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woX 2
results in terms of the well-established thermo-
dynamic variable Xpenq- To do so, we must
(1) The mean-field

interaction free energy per unit volume (or per

make two assumptions:
site in this study) Xplend®AB®C is set equal
to the equivalent expression formed by the
terms e;Ny;/N (as we assumed for the A/B
(2) According to the
of

, the interactions both in

system just discussed).

“molecular soup” scheme

2,3)

copolymer-
copolymer theory
the blend and in the pure copolymer melt
become the thermodynamic reference states for

the mixing properties. We obtain the expression

XplendPABSC
1
Y {eapNap + eacNac + epcNac

— $ABeAB(NAB)co ,x } (7)
where the first three terms on the right-hand
side characterize the blend, and (Nap)eo  is
the equilibrium number of heterocontacts in
the pure copolymer melt at a copolymer com-
position x. One can see that this expression
corresponds to the *“molecular soup” scheme,
except that the individual terms are not mean-
tield estimates but parameters arising from the
MC calculation. (Note that this expression is a
special case of the general relation given in

Ref. 8, Eq. 6.)

Results of a simulation in terms of Xplend
versus copolymer composition x for a constant
1:1 blend composition are shown in Figs. 2 and
3. Figure 2 illustrates the results when both
intermacromolecular interactions are equal, that
is, when eapc =egc = 0.05. This value corres-
ponds to the demixing transition in blends of
the homopolymers A/C and B/C. We see, how-
ever, that the corresponding x found here
(0.075) is somewhat lower than that (0.11)
found in example 1 for a three-dimensional
homopolymer binary blend. The two curves,
which connect the axes representing binary
homopolymer blends, represent the effects of
different A-B repulsive interactions within the
in the

copolymer copolymer/homopolymer

— 6 —
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Fig. 2 Variation of Xpeq Wwith copolymer
composition x (for constant ep¢ = epc
= 0.05 and a 1:1 blend composition) for
two repulsions: O, eap = 0.2; ®,e5p =
1.2,
o03F 1 T I T T
0.2F
T
§ oif
O
x
O -
-0.1ir B
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6] 05 .0
Copolymer composition, x
Fig. 3 Variation of Xpeng with copolymer

composition x (for constant epc = 0.1,
epc = 0.2,and a 1:1 blend composition)
for two repulsions: 0, exp5 = 0.2;0, eap
= 1.2. The solid curve represents the
fitting of Eq. (3) from the data within
the miscibility window.

blend. For eap = 0.2 (open circles), we found a
smaller effect of additional mixing due to A-B
repulsion, which manifests itself by reducing
Xpleng- For the stronger repulsion epp =1.2
(filled circles), we found a large decrease in
Xpeng- Both curves can be well characterized
by the quadratic equation (3) predicted from
copolymer theory.

In contrast Fig. 3 shows deviations from the

MF picture. Here esc and egc were chosen to
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be greater than the demixing transition in the
A/C and B/C systems (epc = 0.1 and egc = 0.2),
so that the introduction of a sufficiently large
A-B repulsion would lead to a real miscibility
window. For a relatively small repulsion (epp =
0.2, open circles), we do not see the effect of
enhanced- miscibility and the system  stays
immiscible over the whole range of compositions.
A stronger repulsion (eap =1.2, filled circles)
within the copolymer leads to a miscibility
window. However, there is an important dis-
tinction. We can recognize two behaviors for this
case. Within the miscibility window, we find
that the system obeys Eq. (3), but outside the
window X .ng values level off because X cannot
substantially exceed Xc- @ finding also seen in
the simple A/B blend. Figure 3 reveals that the
segmental parameter X , -, if evaluated according
to Eq. (3) outside the miscibility window, does
not correspond to a real A-C interaction in an
A/C binary homopolymer bland (Xblend = Xac
for x=1). The same conclusion is valid for
Xpc and the B/C system. In fact, Xpc must be
smaller than that estimated by Eq. (3). Again,
the real repulsive term must be smaller in order
to satisfy Eq. (3). This result is analogous to

the peculiar experimental results showing some

excessively large Xj; values. For example, for
the styrene acrylonitrile system, Xs AN = 0.98,
and for styrene-maleic anhydride system, Xs.MA
=1.85 have been reported®.  However, this
behavior is not a failure of the copolymer theory
Our MC results for

Xplend ©ver the total composition range x only

represented by Eq. (3).

shows that an approach based on Eq. (3) treats
the system as though it were miscible or at the
phase boundary.  Thus, the X;; parameters
extracted from phase boundaries depict the
situation for randomly mixed, and miscible
situations.  Thus it is correct to use these
segmental interaction parameters for characteriz-
ing the miscibility boundaries in copolymer
mixtures (at the miscibility boundary, the
mixing is still nearly random) and also to transfer
the x;; obtained from one copolymer system to

predict or analyze the miscibility boundaries
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of another system including the same i inter-
actions. However, a problem would appear if
we were to apply the X;j obtained from co-
polymer blend experiments to the binary homo-
polymer i blend.

To summarize, segmental interaction para-
meters X obtained from miscibility windows
or generally from the phase boundaries charac.
terize only this region. One cannot extrapolate
blend behavior beyond this region to obtain
individual Xij that could apply to binary ij
polymer blends. We find the real Xjj's operative
for individual i blends are actually lower than
the values extracted from the copolymer scheme.
Segmental interaction parameters obtained from
the copolymer scheme should therefore be
considered as parameters characterizing the
critical behavior of the copolymer blend. They
represent only the interactions involved and
are not transferable to a corresponding binary
homopolymer blend.

Example M. The effect of interactions and
éomposition on polymer coil size
in a polymer blend

It is already well established that polymer
coils in a condensed homopolymer phase have
an ideal unperturbed behavior {which resembles
the f-state in solution). However, this ideality
is not necessarily so in polymer blends, where
interactions and composition may introduce
perturbations in coil behavior. More recently,
as experimental and theoretical techniques have
been used to investigate single chains in con-
densed polymer systems, this discrepancy has
become more apparent,

The first report was made by Kirste ez al,,10)
who concluded that coil sizes are nearly ideal;
although in some cases they found a very small
expansion. We reported the results of an MC
simulation of the expansion of coils in miscible
blends with a 1:1 (symmetrical) composition in
two-dimensionall D) and three-dimensional
systems”).  In two dimensions, the expansion
For the

more realistic three-dimensional system, how-

was large for favorable interactions.
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interaction energy €AB. Reprinted,

with permission, from ref. 7.

ever, we found nearly ideal behavior with
relatively small expansion (only a few percent
greater than the unperturbed coil size). Figure 4
illustrates this relatively small expansion ofal:l
blend for various interactions.

Recently Ediger ef 2l.1?) indicated that the
coil size of one polymer dispersed in a matrix of
the other is a very sensitive indicator of the
interactions between the polymers. In ac
cordance with that finding, Binder ef al1d
observed a collapse of chains dispersed in another
matrix polymer, an observation indicating
unfavorable interactions between components.
This observation leads to the corollary prediétion
that, for asymmetric composition and favorable
interactions, one should observe an expansion
of the dispersed minority chains. Example 111
deals with an MC

situation.

simulation of the latter

Figures 5 and 6 show the effects of inter-
actions and blend composition on coil size. Both
favorable interactions between blend com-
ponents and a composition asymmetry have to
be present to observe significant differences in
the sizes of the coils. Figure 5 shows that at
compositional symmetry (xg =0.5) both A and
B chains are equal in size and exhibit a small
expansion because of favorable interactions. As

the system becomes more asymmetric, the

L

2

Expansion coefficient, &

Fig. 5

2

Expansion coefficient, o

Fig. 6
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0. 0.3 05

Composition of minority chain, xg

Variation of expansion coefficient a* of
the minority B chains () and the
majority A chains (0) with blend com-
position xp in the mixture, for a con-
stant A-B attraction, eap = —0.5. Re-
printed, with permission, from ref. 11,

L | L } L
-02 -0.4

interaction energy, €,

oF-

Variation of chain expansion with
reduced interaction energy esp for a
constant asymmetric chain composition,
xp = 0.1136; e, minority B chains; ©,
majority A chains. Reprinted, with
permission, from ref. 11.
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majority chains experience more and more of
their own environment and approach the un-
perturbed dimension (o =1). The minority
chains, however, are dispersed in the other
polymer and expand as a result of the many
favorable interactions with the matrix. Figure 6
shows that when the composition is asymmetric,
the minority chains react strongly (ie., they
expand) to even small changes in interaction
energy, whereas the majority chains retain their
unperturbed dimensions and do not respond
to the changing interaction energy.

These results show that the coil expansion
under asymmetric composition conditions is
significantly greater than a few percent and
thus is definitely accessible by experiment and
must play a role in the various phenomena
touched on below. Figure 6 supports previous
observations indicating a high sensitivity of the
coil dimensions of dispersed B chains to polymer
B-polymer A interactions.

The implications of the variation of coil size
with changes in interaction energy and com-
position are numerous. For example, at
polymer-polymer interfaces, at surfaces, and in
confined systems such as pores, the different coil
sizes will lead to different behaviors of the
interface layer when the interface thickness is
of the same order of magnitude as the dimen-
sions of the coils. In fact, the larger coils will be
expelled from the interface to the bulk region,
whereas the smaller coils will remain in the
interface layer. However, this effect of different
coil sizes is complicated at interfaces by other

surface effects that act concomitantly,
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