Calorimetric Analysis of the Effect of 60Co γ-rays on the Growth of Saccharomyces cerevisiae

Sandra Wirkner, Katsutada Takahashi, Masakazu Furuta, and Toshio Hayashi

(Received January 16, 2001; Accepted March 28, 2001)

Using a heat conduction type multiplex calorimeter equipped with 24 calorimetric units the heat evolution from growing 60Co γ-irradiated Saccharomyces cerevisiae was detected in the form of growth thermograms. 60Co γ-irradiation affected the growth pattern in which a dose-dependent reduction of the growth rate constant was observed together with the retardation in growth, indicating an involvement of bactericidal and bacteriostatic effects. These effects were quantitatively analyzed in terms of the bactericidalty as a function of dose intensity, which was defined in the previous paper.

It was shown that the bactericidal effect of γ-ray irradiation was dominant within lower doses and decreased almost linearly with the increasing doses up to 3 kGy. An equation to determine the number of survivors on the basis of the parameters calorimetrically determined was developed. The survival rate obtained by a proposed equation was in good agreement with that determined from the colony counting up to a dose range of 4 kGy. However, a remarkable difference was found to exist between the two results obtained at doses higher than 4 kGy. The discrepancy was discussed in terms of action mechanism of irradiation.

1. Introduction

Microbial calorimetry is potentially useful for quantitative evaluation of the growth activity of microbial cells based on the detection of their metabolic heat. It has been shown that the method provides not only quantitative information about the microbial growth activity, but also characteristic features about the bactericidal and bacteriostatic effects of various chemicals.

Some antibiotics like penicillin, ampicillin, and polymyxin B were shown to have the bactericidal effects, while the others such as streptomycin, tetracycline and chloramphenicol exhibited bacteriostatic nature on Escherichia coli. In contrast, many other chemicals including alcohols and organic acids, boron derivatives, and diols have been shown to affect yeast strains bacteriostatically as well as bactericidally. In the case of bacteriostatic action, the increase in doses results in the reduction in the growth rate constant. On the other hand, the bactericidal action appears in the growth thermograms as a parallel shift toward a longer incubation time with increasing doses, thus the incubation time t_{i0} required for the microbial activity to reach a certain level n, being increased, while the growth rate constant μ_0 remains essentially constant.

In the previous paper, it was shown that the both antimicrobial effects can be more quantitatively expressed by comparing the specific growth activity, μ_0/μ, with the specific growth retardation, $t_{i0}/t_{i0'}$, respectively and a proposal was made to introduce an index term "bacteriostatic/bactericidal index". SCI, to define a degree of bacteriostatic action relative to that of bactericidal action. According to the theory developed, the SCI can be easily given by the slope of a plot of μ_0/μ against $t_{i0}/t_{i0'}$ that are obtained from the growth thermograms observable with different doses. Wirkner and Takahashi have further improved this theory and defined a new...
additional parameter, bactericidality σ to show its dependence on drug concentrations to predict the property of drug actions.11

Lethal effect of ionizing radiation is well known and irradiation decontamination with ^{60}Co γ-rays and electron beams has already been practiced for the wide variety of medical supplies and foodstuffs.15,16 Ionizing radiation causes damages to bioactive molecules including DNA in microbial cells and some of them are repairable during the incubation after irradiation. Therefore growth pattern of each microorganism could change after irradiation depending on the irradiation dosage and repairing capacity. In order to evaluate radiation sensitivity, surviving fractions of irradiated cells are usually measured by colony counting to obtain survival curves as a function of radiation dose.17,18 However, it cannot provide any information about the bacteriostatic and bactericidal actions of the ionizing radiation on microbial cells during the growth, especially before colony formation.

In this paper, we employed $\textit{Saccharomyces cerevisiae}$ to examine the irradiation effects on the growth after various doses of ^{60}Co γ-irradiation and exploited equations describing bactericidal and bacteriostatic effects comprehensively applicable to predictive microbiology of irradiated materials.

2. Materials and Methods

2.1 Test microorganism and culture media

The polyploid yeast strain $\textit{Saccharomyces cerevisiae}$ KW4 used as a test organism in this study was cultured in glucose peptone broth (GPB) (20 g glucose, 2 g yeast extract, 0.5 g MgSO$_4$, 5 g polypeptone, 1 g KH$_2$PO$_4$ per liter; pH = 5.6). GPB supplemented with 20 g agar l$^{-1}$ (GPA) was used for colony counting. All reagents were supplied by Wako Chemical Industries, Tokyo, Japan.

2.2 Irradiation

$\textit{Saccharomyces cerevisiae}$ KW4 was grown for 24 h to the stationary phase in GPB at 30 °C. Cells were harvested by centrifugation, washed and diluted to about 106 cells ml$^{-1}$ with sterilized water. Two ml of the suspension was distributed into glass tubes with stoppers for irradiation. The irradiation was done at room temperature with γ-rays from a ^{60}Co-source (15 kGy h$^{-1}$) in the irradiation pool at the Research Institute for Advanced Science and Technology, Osaka Prefecture University.19 The dose range for irradiation was from 0 to 8 kGy. The tubes were kept on ice before and after irradiation.

2.3 Growth monitoring and procedure

A multiplex isothermal batch calorimeter containing 24 calorimetric units was used to detect the heat evolution during the growth of yeast at 30 °C. The design of the apparatus has been described previously.20 500 µl of the irradiated samples were added into sterilized glass vials containing 5 ml of GPB and sealed tightly. The vials were then placed in a calorimetric unit and the heat evolution during the growth was observed for 48 to 120 h at 30 °C. The calorimetric signals thus detected were filed in magnetic discs for further computational analysis.

2.4 Colony counting

The irradiated and unirradiated control samples were diluted serially and plated out on GPA. The plates were incubated at 30 °C for at least 24 h or 48 h and the colonies were counted after the colony numbers appeared on the plates became constant.

2.5 Statistical evaluation

A Student’s t-test was performed to determine statistical significance between the logarithmical reduction in cell number determined by the calorimetric method and by cell counting. P values are given.

3. Results and Discussion

Representative growth thermograms of $\textit{Saccharomyces cerevisiae}$ irradiated with various doses from 0 to 6 kGy are shown in Fig.1(a). After a few hours of incubation, calorimetric signals (or shortly $g(t)$ curves in our notation) rose due to the growth of the yeast cells, reached their peaks and finally returned to the baseline as nutrients were exhausted.

Increasing irradiation doses made the peaks shift towards a longer incubation time. The height and the slope of the peaks were also affected drastically after irradiation with increasing doses higher than 2 kGy. These observations are in strong contrast to those shown in Fig.2 which one would obtain when microbial growth is affected either by ideally (a) bactericidal or (b) bacteriostatic actions.5,7 The $g(t)$ curves shown in Fig.1(a) are characterized by the changes in pattern that with increasing doses at a lower dose range up to 3 kGy the growth thermograms shift simply toward longer incubation
time, their shapes being unchanged, while at a dose range higher than 4 kGy the thermogram shapes drastically broaden with increasing the dose. These dose-dependent changes indicate an involvement of the combined effect of bacteriostatic and bactericidal actions in \(\gamma \)-ray irradiation.

The \(g(t) \) curves can be converted to the actual heat evolution curves \((f(t) \) curves) by eq.(1), as reported previously.\(^{2,3,11,12,20,21}\)

\[
f(t) = g(t) \cdot K \int g(t) \, dt
\]

The \(f(t) \) curves are known to correspond to the changes in cell number or turbidity during the culture and can be described by eq.(2),

\[
f(t) = A N_0 e^{-B} + B N_0
\]

where \(N_0 \) is the initial cell number and \(A \) as well as \(B \) are constants.\(^{2,21,22}\) The \(f(t) \) curves obtained by using eq.(1) are shown in Fig.1(b). From the values of \(f(t) \)

![Fig.1 Growth thermograms (a) and actual heat evolution curves (b) of \(\gamma \)-ray-irradiated \(\text{Saccharomyces cerevisiae} \) \(\text{KW4} \) at various doses: 0, 1, 2, 3, 4, 5 and 6 kGy, respectively.](image)

![Fig.2 Model growth thermograms one would obtain for the growth experiments with (a) bactericidal and (b) bacteriostatic actions. In (a) calorimetric measurements were conducted on the growing culture of \(\text{Saccharomyces cerevisiae} \) at 30°C with the various initial cell population from \(1.1 \times 10^3 \) to \(2153 \times 10^3 \) cell ml\(^{-1} \). Instead of changing the concentration of a drug having purely bactericidal action, the initial cell population (the inoculum size) was varied by quantitatively diluting the cell suspension. In (b) calorimetric measurement was conducted on the growing culture of \(\text{Saccharomyces cerevisiae} \) at 30°C grown in media containing various amounts of ethanol at concentration 0—5.92%. Both the figures were reproduced from Ref. 21.](image)
Effect of γ-ray irradiation on yeast growth

Table 1 Growth parameters of γ-ray irradiated S._cerevisiae with different doses from 0 to 6 kGy. The numerical values were obtained from the growth thermograms observed according to the method described in the text.

<table>
<thead>
<tr>
<th>(i)/kGy</th>
<th>(n)</th>
<th>(\mu_i/\mu_m)</th>
<th>(t_{\alpha}(i)/t_{\alpha}(0))</th>
<th>(\sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1.000</td>
<td>1.000</td>
<td>0</td>
</tr>
<tr>
<td>0.5</td>
<td>12</td>
<td>0.943 ± 0.046</td>
<td>0.875 ± 0.014</td>
<td>0.828</td>
</tr>
<tr>
<td>1.0</td>
<td>12</td>
<td>0.886 ± 0.058</td>
<td>0.519 ± 0.049</td>
<td>0.763</td>
</tr>
<tr>
<td>1.5</td>
<td>3</td>
<td>0.867 ± 0.020</td>
<td>0.439 ± 0.036</td>
<td>0.763</td>
</tr>
<tr>
<td>2.0</td>
<td>12</td>
<td>0.877 ± 0.053</td>
<td>0.373 ± 0.049</td>
<td>0.804</td>
</tr>
<tr>
<td>2.5</td>
<td>3</td>
<td>0.864 ± 0.062</td>
<td>0.352 ± 0.003</td>
<td>0.790</td>
</tr>
<tr>
<td>3.0</td>
<td>12</td>
<td>0.764 ± 0.053</td>
<td>0.256 ± 0.058</td>
<td>0.683</td>
</tr>
<tr>
<td>4.0</td>
<td>12</td>
<td>0.640 ± 0.115</td>
<td>0.206 ± 0.016</td>
<td>0.547</td>
</tr>
<tr>
<td>5.0</td>
<td>6</td>
<td>0.454 ± 0.075</td>
<td>0.148 ± 0.020</td>
<td>0.359</td>
</tr>
<tr>
<td>6.0</td>
<td>3</td>
<td>0.196 ± 0.052</td>
<td>0.073 ± 0.030</td>
<td>0.133</td>
</tr>
</tbody>
</table>

Fig. 3 Decrease of specific growth rate constant (open marks) and specific growth retardation (closed marks) with the irradiation dose; fittings from eqs. (4) and (5) are shown in dotted lines. The minimum inhibition doses, \(MID_\alpha\) and \(MID_\mu\), as evaluated from the changes in specific growth activity and in specific growth retardation, respectively, were determined by using eqs. (6) and (7) and are listed in Table 2 together with the four parameters. The circles are the data points averaged over 68 data sets. The error bars are in standard deviation.

Thus determined, the growth rate constant \(\mu_i\) and the growth retardation \(t_{\alpha}(i)\) can be calculated on the basis of eq.(2) by the previously reported method.\(^{2,3,20,21}\) Furthermore the specific growth activity and the specific growth retardation, defined as \(\mu_i/\mu_m\) and \(t_{\alpha}(0)/t_{\alpha}(i)\), respectively, can also be determined by the method described earlier,\(^{2,3,20,21}\) where \(\mu_m\) is the growth rate constant at zero dose \(i = 0 \text{kGy}\) and \(t_{\alpha}(0)\) is the incubation time at which the growth activity becomes a certain level \(f'(t) = \alpha\) at \(i = 0 \text{kGy}\).

The values of \(\mu_i/\mu_m\) and \(t_{\alpha}(0)/t_{\alpha}(i)\) thus determined are listed in Table 1 and are plotted as a function of irradiation dose in Fig. 3. According to the theory developed previously,\(^{6}\) in the case of a totally bactericidal action growth rate constant remains constant over the dose range used and the inhibitory effect is only observed as the retardation in growth, \(i.e.\) in calorimetric terms a parallel shift of the growth thermograms towards a longer incubation time. On the other hand a purely bacteriostatic action does not affect the initial cell number and the changes in specific growth activity \(\mu_i/\mu_m\) should be equal to those in \(t_{\alpha}(0)/t_{\alpha}(i)\) over the range of doses.\(^{6}\) The plots in Fig. 3 already indicate that the effect of \(^{60}\)Co γ-ray on \(Sacch._cerevisiae\) is not a purely bactericidal action but involves bacteriostatic action to a certain extent. In fact, as shown in Fig. 4, the SCI plot\(^{6}\) made for these data sets does not show a straight line with a definite slope, but has an upward curvature, indicating that the action pattern is a strong function of dose.
Corresponds to the value of Fig. 3dose determined by regression analysis. eqs. (4) and (5), respectively, using the 4 parameters the fitted dose response curves drawn on the basis of t quantitatively, the bactericidality dose intensity at the lower doses, it decreases sharply rate constant gradually decreases with the increase in intensity. It should be noted that while the specific growth on the experimentally obtained data sets of curve can be mathematically drawn by regression analysis in contrast, effect is ideally bacteriostatic and the equations "concentration" in the action of chemicals), then we have determined in our previous paper 1) was employed. The bactericidality is defined as the bactericidal with θMID and is expressed by eq.(3);

$$\sigma = \left(\mu \mu_a - t_a(0)/t_a(i) \right) / \left(1 - t_a(0)/t_a(i) \right)$$ (3)

From eq.(3) it will be obvious that $\sigma \geq 0$, if the effect is ideally bacteriostatic and $\mu \mu_a = t_a(0)/t_a(i)$. In contrast, $\sigma = 1$ when antimicrobial action is purely bactericidal with $\mu \mu_a$ being 1 over the entire range of doses.

If one assumes that the decrease in specific growth activities is proportional to the m-th power of dose (or "concentration" in the action of chemicals), then we have the equations

$$\mu \mu_a = 1 - k_i t_m$$ (4)
$$t_a(0)/t_a(i) = 1 - k_2 t_i^2$$ (5)

where m_i, k_i, m_2 and k_2 are constants. Dose response curve can be mathematically drawn by regression analysis on the experimentally obtained data sets of $\mu \mu_a$ and $t_a(0)/t_a(i)$.2,3,11,12,16,17 The two dotted lines given in Fig.3 are the fitted dose response curves drawn on the basis of eqs.(4) and (5), respectively, using the 4 parameters determined by regression analysis.

If we employ a definition of the minimum inhibition dose MID to be the irradiation dose at which the microbial activity is completely lost, it will be obvious from Fig.3 that the intercept of the plots on the x-axes corresponds to the value of MID. Thus the MID$_0$ and MID$_b$ values are mathematically determined from the specific growth activity and the specific growth retardation by the following equations, respectively.

$$MID_0 = (1/k_1)^{1/m_1}$$ (6)

$$MID_b = (1/k_3)^{\theta\text{MID}}$$ (7)

The results are listed in Table 2 together with the 4 parameters determined by regression analysis. Using the parameters, m_i, K_i, m_2 and K_2, eq.(3) can be rewritten as

$$\sigma = 1 - (k/k_2) t_i^m \text{(6)}$$ (8)*

Calculation of σ was made on the basis of eq.(3) and the result obtained is illustrated in Fig.5 as a function of irradiation dose i. It is clearly and quantitatively reconfirmed that the irradiation acts on $S. \text{cerevisiae}$ both bactericidally and bacteriostatically and the bactericidality σ decreases almost linearly with the irradiation dose higher than 3 kGy.

Survival ratio of $S. \text{cerevisiae}$ can also be calculated from the growth thermogram shown in Fig.1. On the basis of the first derivative of eq.(2), $t_a(0)$ and $t_a(i)$ can be expressed respectively by eqs.(9) and (10),2,3,11,12,16,17

$$N_i = N_0 \exp\left(\mu \mu_a \cdot t_a(0) \right)$$ (9)
$$N_i = N_0 \exp\left(\mu \mu_a \cdot t_a(i) \right)$$ (10)

where N_0 is the number of cells at the start of incubation without irradiation, N_i is the number of survivors after treatment with the dose of i kGy and A is the constant. From eqs.(9) and (10) surviving fraction after i

*In the preceding paper, eq.(1) was used to express the bactericidality.

$$\sigma = 1 - (k/k_2) t_i^m \text{(6)}$$ (11)

where t_{red} is a reduced "concentration" in the action of chemicals and is given by

$$t_{red} = i/MIC$$ (11)

The reason why the above reduced concentration was employed in the previous study1 is that its use is more convenient for practical comparisons of the above defined bactericidality parameters σ under different conditions rather than the use of absolute magnitude of concentration i.

Table 2 Parameters determined for the effect of 60Co γ-ray irradiation on $S. \text{cerevisiae}$ at 30 °C.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_i</td>
<td>1.70 ± 0.15</td>
</tr>
<tr>
<td>k_1</td>
<td>0.033 ± 0.009</td>
</tr>
<tr>
<td>MID$_0$</td>
<td>7.00</td>
</tr>
<tr>
<td>m_2</td>
<td>0.38 ± 0.02</td>
</tr>
<tr>
<td>k_2</td>
<td>0.469 ± 0.010</td>
</tr>
<tr>
<td>MID$_b$</td>
<td>7.25</td>
</tr>
</tbody>
</table>

110 Netsu Sokutei 28 (3) 2001
kGy irradiation can be expressed as follows;

\[\frac{N_i}{N_0} = \exp\{\mu_i/\mu_m \cdot t_{a}(0)/t_{a}(i)\} \quad (11) \]

\[\log \frac{N_i}{N_0} = (1/2.303)\{\mu_i/\mu_m \cdot t_{a}(0)/t_{a}(i)\} \quad (12) \]

The logarithmic numbers of surviving fractions determined by eq.(12) together with those determined by colony counting are summarized in Table 3 and are plotted against irradiation doses in Fig.6. Although the significance of the observed data plotted in the figure varied as error bars shown (standard deviation), the both survival curves are in reasonable agreement with each other at least up to 4 kGy. However, at 5 kGy and 6 kGy irradiations a significant difference was found to exist in the number of survivors determined by the two methods \((P < 0.001) \). As shown in Fig.1, the growth thermograms of 5 kGy and 6 kGy irradiated cells indicate the most bacteriostatic feature. It seems probable to think that under a condition where the action involves both the bactericidal and bacteriostatic effects, the cell number decreases and at the same time the growth rate of survived cells is also expected to decrease. Therefore, numbers of the survivor determined by colony counting may be significantly smaller than those determined calorimetrically using eq.(12) as appeared in Fig.6, probably because the some portion of the cells grew too slowly to form visible colonies for overnight incubation after 5 kGy irradiation. Indeed we observed that the number of macrocolonies on agar become constant after 2 days of incubation at a lower-dose irradiation \((i < 2 \text{ kGy}) \), but, after treatment with higher doses, the final number of colony forming units slightly increased for up to five days (data not shown).

Ionizing radiation induces a variety of DNA lesions. It is now widely accepted that the occurrence of double-strand breaks is the factor that determines whether yeast
cells and other eukaryotic cells will die after treatment with ionizing radiation. In *S. cerevisiae*, over 30 genes involved in nucleotide excision repair including base excision repairs and recombination repairs have already been characterized. Some of them including Rad9 function as a checkpoint gene to arrest cell cycle transiently during DNA repair.\(^2\)\(^3\)\(^4\) They are transcriptionally induced in response to DNA damage. Relatively small numbers of DNA damage caused by lower-dose irradiations can be completely repaired and the survived cell can grow normally after cell cycle is restored. However, at higher doses, it is more difficult to repair all the damage within the limited time of the cell cycle arrest. Our evaluation of decreasing bactericidality with increasing doses of \(^{60}\text{Co} \gamma\)-rays more than 2 kGy clearly suggested that the existence of incompletely recovered cells carrying unrepaired damage. In such cells unrepaired damage may contribute to the retardation of growth resulting from the decrease in growth rate.

With the aid of the calorimetry, the different feature of radiation effect, such as bactericidal and bacteriostatic effects can be analyzed quantitatively. Using haploid, diploid and polyploid species having different radiation sensitivity together with repair deficient mutants of *S. cerevisiae* we expect that the mechanism of irradiation sensitivity and repair pathways will be clearer enough to be the basis for understanding the other important microorganisms in food irradiation and sterilization of medical devices.

Acknowledgment

One of the authors (S. W.) has been financially supported by the Japanese Ministry of Education, Science, Sports and Cultures (#981022).

References

Effect of γ-ray irradiation on yeast growth

要 旨

コバルト・ガンマ線を酵母細胞に照射して，それによる増殖活性への影響を定量的に観察した。微生物活性の計測には伝統型の多試料測定法を用い，種々のガンマ線強度で照射処理した酵母細胞を一定時間培養培地に接種し，30日培養後の増殖サーキリオグラムを観察した。

熱測定法により観測した増殖挙動は，ガンマ線照射强度に依存して変化し，その作用に殺菌的な効果と同時に微生物活性の変化が含まれることを明らかに示すものであった。そこで，前報で報告した同法に基づき，殺菌性効果を求めるために，その照射強度依存性を定量的に分析した。その結果，0.1–3 kGyの照射強度領域においては，殺菌的な効果が照射強度の増加とともにほぼ直線的に減少することが明らかとなった。また，熱測定的に生残率を求める式を導き，その結果得られた値をコロニー計数法から得られた値を比較したところ，4 kGyまでは両者の値は良く一致した。しかし，それ以上の照射強度で処理したものについては，生残率は一致せず，その違いについてガンマ線照射の作用メカニズムの立場から考察した。

Katsutada Takahashi
Lab. of Biophysical Chemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture Univ., and Lab. of Non-destructive Analysis, KVC, Keihanna Academy of Science and Culture, TEL. 0722-54-9387, FAX. 0722-50-0525, e-mail: ktakahas@biochem.osakafu-u.ac.jp
研究テーマ：生化学反応の熱力学，微生物細胞の増殖活性計測
趣味：テニス，音楽（音楽）

Masakazu Furuta
Research Institute for Advanced Science and Technology, Osaka Prefecture Univ., TEL. 0722-54-9844, FAX. 0722-54-9935, e-mail: mfuruta@riast.osakafu-u.ac.jp
研究テーマ：バイオ医薬材料，食品に対する放射線照射効果及び処理に関する研究
趣味：音楽（バイオリン演奏，オーケストラ）

Sandra Wirkner
Lab. of Biophysical Chemistry, Graduate School of Agriculture and Biological Sciences, Osaka Prefecture Univ., TEL. 0722-50-0525, FAX. 0722-50-0525, e-mail: sandra_wirkner@hotmail.com
研究テーマ：微生物増殖活性に対する各種の物理化学的要因の影響の解析
趣味：テニス

Toshio Hayashi
Research Institute for Advanced Science and Technology, Osaka Prefecture Univ., TEL. 0722-54-9842 FAX. 0722-54-9935, e-mail: toshi@riast.osakafu-u.ac.jp
研究テーマ：療法に役立つ新規高分子材料の開発
趣味：ブラジリ，旅行（専門書から漫画まで），音楽（クラシックからロックまで）

Netsu Sokutei 28 (3) 2001