第31回熱測定講演会報告

はじめに

今回は、第30回記念熱測定講演会と次回の熱物性シンポジウムとのジョイントミーティングの2つの大きな講演会の間に関かれた通常の講演会であった。10月2,3および4日の3日間、名古屋大学工学部7号館、3講演会場および3展示会場を使って、開催された。今回の講演会の開催につながって打診があったとき、辻利秀先生（名大・工）と松井恒雄先生（名大・工）の2人にご相談したところ、宜しいということ、お引受けすることにより、その決断にいたるまでに検討する時間が十分に取れなかったこともあって、名古屋大学の中では行うことになった。したがって、会期は学生の試験休みの秋季休業中ということになった。会場の準備を始め、終始、この2人の方に大変お世話になった。この場を借りて、お礼申し上げたい。また、開催の実務に関して、大阪工大の長田正雄、有田裕二および高橋浩の2方にも大変お世話になった。ここに、お礼申し上げる。

1日目と2日目は3講演会場を使って講演会が行われた。3日目は2講演会場を使った。いずれも大教室を使ったので、特別講演を含めて、座席は十分に足りていた。3講演会場の場合は、関心深い講演が2つ以上に比べて、内容に限界がある。この点で、お手数があったし、これを改善するという方針を立てた私達が責むべき内容の一端である。プログラムの編集は、松本博之（阪大・理）、相手茉（東レリサーチセンター）および深田不二美（阪府大・農）の2方、名古屋大学の3人（植、松井、八田）が加わって、実現された。「プログラムの編集にお手数をいただく方々に感謝します。プログラムの編集に当たっては、特別講演の前も含めて、午前中に休憩を2回取り、午後に1回とすることにした。休憩としては、時間が少し短かったかもしれないが、少なくとも講演時間が延長したときの調節、各講演会場への移動等のためには役立ったと思う。また、3講演会場としたために、ゆとりができ、一般講演の講演時間を13分、討論時間を7分とすることができた。討論時間が十分にあって、良いという感想を何人かの方々から慣れ聞いている。それには、座長の先生方の会場に負うところも大きい。座長の役割について一言：座長は、講演者に時間を守らせること、当たること、充実した討論を展開すること等、与えられた

時間の中でいっさいの権限と責任をもっている。時が経つにつれて、それが形骸化し形骸化していく恐れがある。この点については、折に触れても初心を思い起こす必要がある。

大きな会場を使ったこともあって、OHPプロジェクトは、手に余る度合いを用いた。休憩中には、学会のシンポルマークを大写しにしたが、これに特に意図するところがあった訳ではなく、このプロジェクトの場面点滅を繰り返さない方がいいということ、と、焦点の調節を講演前にしておくためのものであった。事実、後ではICTC-96の宣伝のためのOHPを写した。OHPについて一言：第30回の講演会の総会の際に、OHPが見え難しいとのご注意があった。今回、その点には注意を払ったつもりであるが（例えは、「発表要領」でOHPの字を大きくする等、OHPのつくり方について注意を促した）、果たしてその効果はあったろうか。

全体で5特別講演が行われた。講演者には、1日目に、神本正行（電気研）とPatrick Gallagher（オハイオ州立大）の2人、2日目に、藤田英樹（東工大・工材研）と高橋克彦（阪大・農）の2人、また、3日目に、横川清美（物質工）氏をお迎しし、それぞれ充実した熱気をもってお話しをいただき大変に感謝しています。また、Gallagher先生には、過ぎ去るスケジュールの心情を何度もあがっていただき、興味ある皆講演をしていただき、ここに深く感謝の意を表します。その際には、新規大・理の増田芳雄先生には、大変お世話になりました。お礼申し上げます。

講演会の登録者は、全体で222名であった。一般講演の発表件数は95であった。したがって、特別講演5件を加えると、講演数はちょうど100件であった。統計資料として、各講演会場での参加者数を10時と15時に数えた。それをまとめると：

<table>
<thead>
<tr>
<th></th>
<th>1日目</th>
<th>2日目</th>
<th>3日目</th>
</tr>
</thead>
<tbody>
<tr>
<td>午前</td>
<td>35</td>
<td>66</td>
<td>21</td>
</tr>
<tr>
<td>午後</td>
<td>43</td>
<td>35</td>
<td>76</td>
</tr>
</tbody>
</table>

A 会場 | B 会場 | C 会場

Netsu Sokutei 23 (1) 1996 29
ギャラス転移、ギャラス状態

第1日の初めにギャラス転移に関する研究が3件発表され
た。最初は東工大工物材の加藤研究の小池氏による発表で、
2-butoxyethanolのギャラス転移現象を断熱型熱量計による
密閉密閉容器と新たに開発された熱容量分光法および誘電
率測定法を組み合わせて測定したもので、ギャラス転移現象
の周波数依存性など、興味ある結果を示している。試料の純
度の影響を調べることや同時測定を試みるとことなどについ
て、発表があった。第2番は、東工大の小野村の京子氏に
よる発表で、不定比化合物であるLa2NiO4の結晶において、
酸素空洞の多い相から少し少ない相に過酸化酸素が拡散する速度
差が観察されることを示した。相分離に基づ
きてギャラス転移（発熱）が起こること、および1次相転移
（吸熱ピーク）が重ねて観察されることを示した。第3番
は、阪大理系尾尾藤の川村氏による発表で、高圧下におけ
るポリスチレンガラスのエネルギー・体積平均での構造
転移と関連について発表した。特に、圧力ギャラスの
エンタルピー転移と体積転移の同時測定を試みたもので、
興味ある結果が得られた。体積転移量が大きくエネ
ルギー転移が速く関連して、高分子物質を取り扱
っている所以から質問が沢山出された。発表者は3件とも
興味深い発表であり、質問やコメントも気軽にできるためで、
7分間を十分に使って活発な討論ができたのが何よりうれ
かった。

（埼玉大学理学部 榎崎芳夫）

ミシンピンボジム「ダイナミックDSC・acカロリメトリーチ」

ACカロリメトリーチ（DSC）は本格的に測定に用いられるようになってから20年あまりがたつ。一方ダイナミッ
クDSC（DDSC）はごく最近になって急激に普及がもじり始めた。今ここDDSC、ACCを主題としてミシンピンボジムが
企画されたのはまさにタイムリーであると言えよう。予想
通りこのミシンピンボジムではいくつかの観点から立体的
に発表が行われ、活発な議論がなされた。

数の上からも、最も目立ったのはDDSCの特徴を積極的
に利用して測定を行おうとするものである。竹之内ら
（名大）によるリン脂質膜相転移の測定は10mHzオーガー
の超低周波での測定が容易であることを利用したものであ
り、村松ら（名大）によるタンパク質変性の研究は従来
のDSCより高いSN比を活用している。横川ら（住ベック
ノリサーチ）はリバーサーベリングとモノリバーサーベリング成分が分
離できることを利用して相の相対性や硬度等の評価を行
った。またプレイン（TAインスツルメント）は旋光体の
カリューアー法の測定で温度をステップ的に変えながら測
定を行い、連続的に温度を変えた場合との結果を比較した。
試みいくつかが発表された。加藤ら（東京工大）は、光照射型ACカロリメータを示差型とし、測定可能な周波数の下限を拡大する可能性を示した。筆者（京都工大）は光照射型DSCで熱容量の絶対値を決定する方法を紹介した。斎藤（東大）は熱流を時間に比例して増加するランダム型を与えることにより熱収支法の測定の精度を示し、また超低温型AC法を用いて熱容量が粗粒度付近で顕著な分散を示す実例を紹介した。

1次転移の評価はDDSC開発のひとつの主要な動機である。この1次転移に関する発表として、まず筆者は光照射型DDSCを用い結果を報告した。斎藤（東理工）は動的熱測定において1次転移を示す試料を表す簡単な等温回路を紹介した。

以上の様々な多彩な報告がじっくりに行われた一方で、出して難を言えば、なるほどDDSCでなくてはできない、と思わせるようなかったったりの適用例が見あたりなかった。

（東京工業大学理学部 江間健一）

電池、熱容量、測定法・装置、特別講演-3

電池セッションでは2件の発表があり、リチウム2次電池の電極材料に関するものであった。放電過程での正極材料LiCoO₂の変化を伴う構造転移およびLi₂C₆ーCoO₃の温度変化を伴う転移点について熱容量法の評価が紹介された。もう1件は負極材料であるカーボンの評価についてであり、リチウム2次電池の容量を示すカーボン材料の有機浴水への浸漬によって見積ることが可能なことが報告された。

熱容量セッションでは、0.1kから309kにわたる温度範囲での熱収支測定による分子構造と相転移に関して6件の発表がなされた。先に筆者が紹介するジルフィルペンゼンフェノール結晶の相転移現象における記憶効果についての結晶の純度との関係について議論された。この問題については相転移現象の理解を進めるものとしてより一層の詳細な検討が必要である。同じく電解質を薄膜状で模擬されているリチウム安定化ジルコニアの低温熱容量測定の報告も興味をひいた。格子欠陥をもつ結晶の格子振動の研究の発展にも期待したい。

測定法・装置のセッションでは、近年発表の多かった熱的DSCがミシンボンコムとして独自のセッションとしていたため発表件数は8件となった。DSCに関しては、1000から150kの温度での温度変化DSCによる比熱量測定の測定精度についての検討および共融混合系の有機試料の熱容量測定法に関する提案がなされた。この温度域でのDSCによる熱容量測定精度の向上に期待したい。TGに関しては数g程度以上の大量試料についての測定法の発表およびCRTA型TG測定法に関して数値シミュレーションによる評価が行われた。熱容量の装置開発としては溶融熱測定用恒温型熱容量計の改良による断熱型熱容量計の開発、長時間型熱容量計の高感度・高精度化、着火領域での測定が可能な混合エンタルピース測定用フロー型熱容量計の開発について発表がなされた。AE-DTAおよびX線回折の同時測定による強誘電体の相転移の研究の発表がある。

特別講演-3では東工大的阿藤教授による「フラーレンおよび関連物質の熱測定による研究」と題する講演が行われた。Coをはじめとするフラーレンおよびその化合物の熱特性についての研究状況について熱測定の立場から述べられたが、特に、試料の純度の制御などの熱的特性研究における基本的な事項がフラーレン構造の性質研究において重要であることに着目し、着実な研究の重要性を再確認することができた。今後、超伝導性を示すアルカリ金属化合物などの興味深い物性を示す物質の研究についてもさらなる発展が期待される。

（広島大学工学部 川路 均）

熱分解、速度論、高分子、特別講演-2

特別講演-2では、オハイオ州の大Park Gallagher先生が「Applications of Thermomagnetometry」と題し、長年にわたり行っている研究を紹介された。Thermomagnetometryは、静電場下での能量変化を温度の関数として測定する方法で、キュリーノの測定手順として用いられる。講演では、ニッケルやコバルトの純度特殊合金ニッケル基のキュリーノに関する研究を紹介しながら、Thermomagnetometryの特徴、測定上の注意、解析法などに触れられたが、発表者はこの手法を使わない者も割りやすい講演であった。次回は、鈴木の研究やコバルト薄膜の酸化などの実用性の高い応用が紹介された。

熱分解のセッションは初日の午後に行われ、8件の発表があった。その内6件はTG-MS法による研究で、同手法が熱分解を扱う上で欠かせない方法になってきたことを実感させられた。扱われた対象は、金属の有機ブリン酸、高分子、メキシコ、アルミー炭素混合物、ウッドセラミックスなどにその範囲において、この分野が潜在的な工業的なニーズに直結している事が想像された。さらに今回は、温度制御TG法に関する発表が他のセッションを含めて4件行われた。この技術は、同様のITC/ACでもワークショップの1つに取り上げられている興味深い手法である。製品開発などの実用面での有効性が強調されたが、測定方法やデータの解釈に関してさらに議論が行われるべき分野であろう。その他では、平衡蒸気圧の測定から水分結合の水の状態と脱水過程の関連を議論した発表があり、このようなデータが蓄積される事によって結晶水の状態についての理解が深まると期待される。

Netsu Sokutei 23 (1) 1996
生体，特別講演-4

生体関係では，一般講演12件（リン脂質3，多糖3，蛋白質5，植物1）とに数多い生体関係の特別講演がある。まず第一日目，B会場でリン脂質膜の相転移の発表から始まり，膜の多様な現象と水との相互作用について，またリン脂質混合系について発表された。DSC1に加えて，時分割X線回折の同時測定により構造との対応を見た等温カロリメトリーとの整合性を求めるものなど，きれいな電子顕微鏡写真も交え議論された。膜脂質の活躍の足場を与える膜の性質と生物現象との相関に思いを馳せながら楽しめた。続いて遺伝情報としての植物の凍結保存を念頭に置いた低温DSC測定，染料や果実類などまたオレラチもありさまざまな植物種や種子が測定対象であった。次のハイドロコロイド2件ではゲル状転移現象が解析された。第2日目は同じB会場で午後に蛋白質の発表があった。蛋白質のドメイン構造の存在を示したDSC測定，抗体蛋白質の各種ドメイン断片の抗原結合能や安定性の解明，さらに，ただ一つのアミノ酸残基を11種のアミノ酸に置換して高活性を遂げたプロテアーゼの活性と構造安定性の関係についての講演が挙げられた。明確に生物活性を持った蛋白質の測定人口は比較的多いが，意外に聴衆が少なかったのは，おそらく，このセッションに充てられているA会場における高橋昌之の特別講演での熱気におさえてしまった，B会場には余波すら来なかったからであろう。しかし，少人数の雰囲気も悪くはない。例年にも増して完売感のある会席が十分な討論時間を確保されたための余裕が分かったものであったと思う。

高橋昌之の特別講演では，皆見られないほど大変にリラックスされた様子で討論を疲れどめた。微生物増殖系を対象として独自の方法論に基づいた解析がされていると，単に微生物からの特定の群落という複合系に至り，環境問題に至る踏み込むで広く適用できることを示された。氏は蛋白質などの生体高分子が本来の専門であり，常に，微生物は人の遊びであると豪語されているが，いままその遊びが氏の独演場を与えてしまっている。ここに氏の好奇心の旺盛さの一端が如実に示されている。生物細胞カロリメトリーの歴史から語られない楽多氏の“高橋筋”は若者方にとって教育的であったと信じる。

（大阪府立大学薬学部　深田はるみ）
（94年、6件）、昨年の年には「表面」として（92年、4件）、あるいは「吸着」として（90年、3件）、細々と続いている様子がわかる。91年はミシシペンジを「溶液および表面の絵学」に含めてもらうが、93年に関連するセッションそのものがないという状態であった。そんな中、最も恐れていたのは発表後の質問もなく、ひっそりとした討論会場であった。今回は昨年と違って、討論時間7分という余裕のあるプログラムであったのにもかかわらず、心配な種があった。しかし、最初の発表でその心配はなくなってしまった。紛って討論は活発で、昨年まで討論時間が少なくて通訳していいた学生諸君であろうか、とに厳しい状況を避けていたのでは印象的であった。どこか新しいのか、そこら辺が興味深いのか？という感が出てくるようになったのには新しい限りであった。個人的には、「表面・界面」は熱測定がこれほどますます進出すべき分野と思うのかが、今後の動向に期待したい。

これと対照的なののが「相転移」のセッションであった。2日目と3日目の会場で、いずれも午前中に合計10件の発表があったうち半数（2日目）は断熱型熱量計を用いた熱容量測定によるもの、2日目にはいわば常連グループによる発表が続いた。プログラム作成上の都合で、相転移を有するものを扱いながら別の発表された「熱容量」や「高周熱測定」のセッションに回されたものもある。それでもして、「断熱型」は依然として強いという印象はする。しかし、相転移という現象を捉えるため自然といえば当然なのかだが、昔のような熱測定プローブの仕事はどんどん減少している。その分、熱測定が手抜きになっていなければならない。と決されるものでしょうが、と決られるもの直直ところ、あまりありました。相転移を調べるため熱測定以外にX線回折、NMR、誘電率などさまざまな手法が適用されるので、研究内容において熱測定が果たした役割があり、明確でないものもあった。熱測定が主導権を握る仕事が数多くなっていくのは「相転移」の分野では仕方のないことであろうか。

（大阪大学理学部 稲葉 章）

溶液、包接化合物

今朝の会のセッションの特徴はなんといっても討論が非常に盛り上がったことである。相違質問のコメントを頂いたが、質問者の方々が非常に有益な質問を頂いた。会場全体で討論している場面も見られるほど熱のこもった議論が筆者の担当した会議会およびその他の講演会で見られた。

まず溶液のセッションは5件の発表が行なわれ、中村（横浜国立大学工）が「過冷却温度と混合熱測定による微水性水相状態の考察」の題で講演され、i-C₆H₁₂OHおよびTHF水溶液の微水性水相による水のネットワーク構造の研究で、濃度ゆらぎの問題を熱量計により定量的に評価した。また荒戸ら（九大・理）は過冷温変定型熱量計を用い、表面活性剤のミセル形成の熱力学量をについて2件の報告を行なった。この方向への熱測定による応用は日本では少なく、その特徴を利用した今後の発展が期待される。木村ら（近畿大学）は「ジクロルベンゼン、ジフロロベンゼン＋FAMSO、＋DMSO系の混合熱」の題で講演し、熱的変化量を測定する三成分系の熱力学的性質より、芳香族の特徴とその特性を明らかにし、この系の相互作用の特徴を報告した。村上ら（大阪大学）は「同位体効果：重水あるいは水＋ジメチルホルムアミド系の熱力学的性質」の題で講演され、重水エンタープ、過剰熱容量、過剰体積、圧縮係数などから比較重水の過剰熱容量の値の差を精密に決定し、軽水と重水の相異および同種の水素結合の強さの違い、その濃度依存性の違いを総合的に検討した。

包接化合物のセッションでは生体関連物質のシクロデキストリンおよびコール酸の報告が4件とされ、これらの化合物への興味の高さを示すものと考えられる。原等（理化学）はCARTA TGとX線構造解析結果よりシクロデキストリン中の結合水の状態についてのアサイレが可能であると報告した。また高木ら（近畿大学）によりコール酸の包接化合物について2件の発表が行なわれた。TG-DTA/MSS、DSC、IR、粉末X線回折等の結果から、包接化合物からゲスト分子の脱離する過程の機構およびエンタープルを定量的に報告された。またゲスト分子の脱離後の、安定相への転移に伴うエンタープル変化が報告された。さらにコール酸包接化合物、コール酸結晶、ゲスト分子が脱離したコール酸の結合を解釈する二つの方法における実験結果を報告した。研究内容において熱測定が果たした役割があり、明確でないものもあった。熱測定が主導権を握る仕事が数多くなっていくのは「相転移」の分野では仕方のないことであろうか。
レポート

特別講演-1，特別講演-5，ミニシンポジウム「高温熱測定」

1日目の11時から特別講演-1として「エネルギー材料と熱測定」と題し，電子技術総合研究所の神本正行氏による講演があった。エネルギー関連材料の各種熱測定による評価に関する講演で，測定された熱挙動の解析と速度論的解説が必要であると指摘された。エネルギー材料の例として，まず蓄熱材料を取り上げ，熱伝達率の高い材料が有効であると紹介された。高密度ポリテフロンはそれ自体熱伝達率が低いので共存性のよい蓄熱体を選択する必要があり，エチレン・プロピレン・テフロン系の吸解・凝固熱測定および蓄熱・蓄熱装置（30kWk級）の蓄熱特性の実測値を示した。蓄熱測定により求めた蓄熱容量測定より求めた計算値と比較し，良い一致を得た。宇宙用蓄熱材料であるLiF/SiC（SiCの多孔体中へLiFを含浸したもの）コンポジット材料について，DSC測定および顕微鏡観察により，熱的，機械的および化学的安定性を評価していた。次に，現在二次電池として注目されているリチウムイオン電池に関し，安全性および信頼性において貯電の観察は重要であり，電池型蓄熱用を用いて充電過程における電位変化と吸熱との関係についての報告が行われた。酸化物検出超伝導体（YBCO）の製造プロセス解析研究にTG-DTAを用い，反応速度論的解析が行われ，界面反応速度論であると結論された。また，核燃料物質の熱測定には，レーザーフラッシュ法を用いた熱拡散率の測定が有用であるが，その場合，観測点を薄く配することで間接的データが得られることが例で示された。高温での測定には双子型高温熱測定量が有効であるが，DSCが低温においてもかなりの精度で測定可能であることを，無機物を例にして示された。熱測定の目指すべき正確さは，DSC測定で1％，熱拡散率で±2％程度であるとされ，最後に今後の課題として，1）測定対象の拡大，2）ダイナミックDSCの応用の可能性等の測定条件の拡大，3）熱力学データベースの構築を求められた。3日目の11時から特別講演-5として「複合化酸化物の熱化学性質とその工学的応用」を題し，物質工学工業技術研究所の横川晴明氏による講演があった。横川氏は，熱測定学会で発表している熱化学データベース MALTDおよびMALTD-2の作成者であり，実際の熱化学データを材料開発研究に応用している経験を基に，熱化学の現状および今後の展開について講演された。まず，過去10年間で熱化学に関する論文数が3倍に伸びており，熱化学熱力学が工学的な展開の時代になったことを見事に示していると述べられた。このことは，先人の努力により熱化学データが蓄積され，またコンピューターの発達により，誰でもどこでも試料をひねればデータが手に入るようになった。熱化学データを利用することが可能になったことを，その理由に挙げられた。しかし，熱化学データは熱量測定であり，評価の必要化，計算結果の解釈に困難さが伴うことを指摘されている。材料化学への応用として，特に複数質変金属酸化物に有効であると述べられた。複合酸化物を構成する二元系の酸化物の熱化学データは公表されており，原子価安定性と安定化エネルギーを基に相関関数を求める，反応を特徴づけることができる。元素数が多い場合でも，化学平衡計算を行い反応安定性について計算し，実験結果に適合することができる。化学ボンダリング法は，1983年に発表された論文で，金属（鉄）の二酸化鈷（黄銅）気中での腐食研究において，酸素分圧および腐食で腐食速度の関係から平衡相を考察することによって適用したのが最初であり，その後その適用について研究し，二次元および三次元の化学ボンダリングの有効性について検討がなされた。実際の応用例として，固体電解質燃料電池の材料開発研究における事例を挙げて講演された。La-CrO₂（YSZ系（LaCrO₃/CoO/Co₂ZrO₂/YSZ）におけるLaの反応経路を化学ボンダリング図より考察し，Liが化学ボンダリングの低い方に拡散していることで実験結果を説明できるとしている。さらに，材料開発における熱力学の応用として，まず材料の化学的安定性を考察することができ，従来のプロセッシングにおいてもEVD，CVD，プラズマCVD等の条件決定に役立つことができると紹介されている。今後の展望として，1）化学熱力学の本格的応用の基盤整備，2）熱力学データベースのさらなる拡大，3）熱力学の応用事例の拡大，4）速度論と平衡論の統合を挙げている。講演終了後，活発な質疑応答が続き，予定時間を越えて行わ，界面，相界反応および拡散への応用の問題等が論議された。また，実際の課題として，現在の熱力学データを算出する研究室，研究者の減少が取り上げられたが，熱測定学会でもこの問題に関し検討を行いなければならないと実感した。3日目のA会場で，「高温熱測定」と題し特別講演を挙げて午前6時，午後8時のミニシンポジウム発表が行われた。「Cd-La合金の蒸気圧測定」では，核燃料サイクルで現在用いられている揮発再処理法により経済的でコンパクトと言われている揮発分再処理法（高温冶金法）の基礎の研究として，高圧下亜離に不可欠な蒸気圧を測定し熱力学量を算出することを目指した。Cd-Laを模擬合金として取り上げ，タングステン製タンクセルおよび飛行時間型高圧ガス分析計を用いて測定した。その結果，Cd-La系には圧力無に非圧縮性，Cd₆₀La₄₀が熱力学的に一番安定であることがわかった。「石英気相型高圧ガス分析計を用いた核燃料炉ペリオデ噴射材への蒸発へスイスガス化学効果の研究」では，核融合プラントからのトリチウムの釈放においてスイスガス中の水素によるLiの損失が問題となるが，増殖体として有望視されている。
Li₂SiO₃およびLi₃AlO₃をD₂またはD₂Oを導入しその蒸気圧特性を研究した。白壁製Knutsonセルを導入ガス添加条件下で平衡蒸気圧を測定できるように改良し、Li₂SiO₃では、酸素の非化学量論的意味を考慮に入れ、測定され、さらに実際の作業条件が検討された。

「CaO-MgO-Al₂O₃-SiO₂系ペリドライトの融解熱測定」では、下部マントル岩石（ペリドライト）をCaO-MgO-Al₂O₃-SiO₂系で単結晶、高圧実験により得られた1.1 GPa、3 GPa、4 GPaにおける各組成の試料をPtカプセルに詰め、1400～1800℃で設定した高温熱流計に落下させ、まず1気圧での融解熱を求め、圧力補正から高圧下融解熱を算出した。「CaOアリカルカリカ（による液体Al-Mg合金の中）」では、工業的に重要であるAl-Mg合金に関する熱力学量をこれまでに報告のない塩石耐圧強度を高圧ロール法によるガラス電流法により算出した。合金液体が挙げられる場合の装置の改良を行い、研究者により数値上昇を行う従来の溶融空気電極に比べて信頼性の高いデータが得られた。「LiMnO₃-LiMnO₃の融解温度と活動度の算出」では、リチウム二酸化物の正極材料として注目されているリチウムスチネル酸化物LiMnO₃の酸素不安定比を酸素分圧を制御した雰囲気下で熱天秤を用いた重力測定から求め、固溶体生成に伴う活動度をGibbs-Duhem式より算出した。「Mn₂O₃-γクラスターの生成熱測定」では、シュレルボルトと呼ばれる多相アスカラスター化合物の骨格構造をなすMn₂O₃（7.8＜γ＜8.0）の発熱反応を実験により求め、さらに生じた気体のSO₂、SO₃比を分析することにより、生成熟を求める。中間相Mn₂O₃がこの系で最も安定であることを示した。「Cr₂O₃の高温熱流計」では、Cr₂O₃へのFeの固溶限界をX線回折および磁気測定からx = 0.08と決定し、二重酸化物熱容量を用いた熱容量測定からクロム酸化物および合金の規則不規則転移に基づく異常を観察し、鉄の添加効果および安定状態の考察を行なった。

「H₂O（x = 0.22）の高温度測定」では、二重酸化物熱容量計を用い、広範囲でハフニウム酸素固体の高温熱容量測定を行い、規則－不規則転移の基転移エネルギーを再評価し、酸素配置選択性を考えたモデルから転移エネルギーの組成依存性を説明。「V-Cr-Ti系合金の熱容量測定（その1）」では、核融合炉第一壁の製材材料であるタンザンリウム合金の熱容量測定をDSCで行い、機械的性質との相関関係は見い出すことができなかったが、熱的安定性への寄与はよりCrのほうが大きいと結論した。「ウラン－バナジウム合金の高温度測定」では、熱力学的な安定状態核燃料再処理過程で不溶解残渣として問題となるMAsを含む合金、ウラン－パラジウム合金の高温度測定を行い、直接加熱パルス型熱容量計を用いて測定し、合金の安定状態を熱力学的観点から説明した。「TiO₂-RuO₂系図溶体の熱特性能」では、HIPにより合成した粒状態の使用体を用いてDSCにより熱容量測定およびレーザープラスマ法により熱拡散率を測定した。TiO₂およびRuO₂の値は文献値と良い一致を示し、今回初めて測定したRuO₂の熱伝導率は高温で異常を示し、固体相ではバンド計算の結果と一致した。 「LiCl-KCl共晶塩・LaCl₃濃度二元系の熱分析」では、溶液水の使用を核燃料の再処理に用いる溶解塩に伴う熱伝導率、DTAおよび目視法によりLiCl-KCl共晶塩・LaCl₃濃度二元系状態図を作成し、EMF測定による結晶温度、液相温度とLa濃度の関係を求めた。「Ti-Al-O系の界面反応の熱力学的解析」では、多成分系の材料開発で問題となる界面反応の解析および反応経路の予測が化学ポテンシャル図の計算を熱力学データベースMALTSと結び付けることにより合理的にできることを実験例を挙げて示した。界面反応に対する熱力学的考察では、午前の特別講義に関し、フロンティアセラミックスの界面・局所組成の変動メカニズム、物質移動過程を検討し、実際の役割をする反応の組成分布を求めるための化学ポテンシャル図の熱力学的考察からモデルを構築する方法について述べた。