第11回熱測定ワークショップ報告
熱分析で“探る”シリーズ2
高分子−水系の相互作用

主催： 日本熱測定学会・熱測定応用研究グループ
協賛： 日本化学会, 日本高分子学会, 日本酸化学会

本ワークショップでは、第1回目の「ホットピークの調査」、第2回目の「高分子化学の相互作用」についての議論が行なわれました。以下に、各講演の概要を紹介します。

1. 高分子−水の水のキラクティシゼーションに果たす熱分析の役割

2. 水の凝縮を利用した人工膜構築の研究

3. Super-Cooling による相転移温度の検討

4. 素締の束縛機能と相互作用

5. ガルスの水のCompartmentalization

6. 融解ガラスのガラス転移に及ぼす Amorphous Ice の影響

7. 蛋白質のガラス転移に及ぼす Amorphous Ice の影響

8. 及の紡糸機構と水

9. 水によるセルロース高次構造の安定化

総合討論

1. 高分子一水系のキャラクタリゼーションに果たす熱分析の役割

十時 稔*

熱分析は、今日開発を極める各種の高分子分析法の中で、最も古い歴史ももつ部類に属し、かつ高分子製品の製造・加工及び実用に至るまでに寄与した分析法でありながら、諸々の事情により、主分析法たる得ているとは言い難い。しかし、この対象を高分子一水系に限定せずに、DSC で代表される熱分析は、NMR とならぶ主分析の地位にあるとしてよい。さらに、正確で確率的に熱を加えると原子を熱分析の範囲に含め、かつ対象物を存在する高分子にまで広げることが許されるとすれば、その立場はもっと強固になる。熱分析は多くの場合、集合体（パルク）に関する情報を除き、円盤状分析情報しか提供できず、これが他の分析法に及ぼす理由の一つであると考えるるものであるから、高分子一水系のような複雑な集合体系では、これに無視することが困難を感じる。以下の段落では、長年の研究で熱分析を行ってきた者の手取りのデータの中から、なるべく本ワークショップの第一話に沿った具体例を、ここに流して紹介する。

1.1 高分子中水の存在状態と水分量を知るための新しい熱分析法（MEAF ）

固体高分子中水の存在状態を正確に求めるのには困難な問題であるが、高分子中水の分析に主な役割を果たす MEA（Moisture Evolution Analyzer）を用いできた。この装置は、求められた水量フラックスにしたがって試料を加熱したときに、試料から発生する水分を温度と時間の関数として連続的に測定するものである。したがって、MEAは、ICTA（国際熱分析連合）が認めた熱分析法の加熱時発生ガス検知法（EGD）に分類される。

Fig. 1は、20℃×65%の雰囲気で調湿された厚み12 μのポリイミドフィルムの MEA 曲線である。Aは発生速度密度曲線であるμg cm⁻2 s⁻¹、Bはその積分曲線μg cm⁻²、Cは温度である。A、Bは、少なくとも4つのピークから構成されていることがわかる。結論的には、Aはフィルム表面の付着水、Bは試料内部の吸着水、Cは残存のイミド化反応によって生成した固相反応、Dは熱分解によって生成した反応水に帰属される。Cの前半部分は結合水の可能性も考えられる。それぞれの水分量は曲線Bから知ることができる。

このように、MEAは、全水分発生量を正確に測定する（積算検出精度10ppm）だけでなく、高分子と水の結合様式すなわち水の存在状態を、熱エネルギーをを利用して識別するものである。

1.2 高分子一水系のガラス転移

単一組成のガラス転移は、温度論的（緩和時間の増大による平衡液体の凍結）で現れるもののが、熱力学的な（凝相）二相転移として記述できることが知られている。同様の認識があるが、高分子ブレンド系、ランダム共重合体、高分子一可塑剤系などの相溶混合系のガラス転移も適用できることが知られている。すなわち、高分子相溶混合系は、液体、ガラス状態と称される。溶液として処理することができる。高分子の見解では、今までも提案されているいくつかの記述式のうち、1,2,3 周で示される Couchman 式が最も完成度が高いようである。

\[\ln T_E = \frac{\sum X_i \Delta C_m i \ln T_{Ei}}{\sum X_i \Delta C_m i} \]

\[T_E = \frac{\sum X_i \Delta C_m i T_{Ei}}{\sum X_i \Delta C_m i} \]

ここで、X_i、T_E は、それぞれ i 成分の重量%とガラス転移温度、ΔC_m は i 成分単独物のガラス転移における初温である。Couchman 式は、溶液のエントロピーから熱力学的に導出されるもので、(1)式はΔC_m の温度依存性が無い場合の、(2)式はΔC_m =一定の場合の適用である。さらに近似をすると、よく知られた拉張 Gordon-Taylor 式や、拉張 Fox 式が導かれる。すなわち、Couchman 式は、これらを含む一般式であると考えられる。

さて、非晶性高分子一結晶性高分子の非晶部も含める。の中に水が存在する、大抵の場合、系の T_E が下る。これは、加熱には水の可塑化作用として知られているものであるが、熱力学的には、この水は高分子溶液系の一つの構成成分と見なし得る。したがっ

Thermal Analysis for Characterization of Polymer-Water Systems

*Netsu Sokutei 18(4) 1991

*株式会社ラサーチセンター：〒520 大津市川崎 3-3-7
Minoru Todoki, Toray Research Center, 3-3-7 Sonoyama, Ohtsu, Shiga 520.
Fig. 1 MEA Moisture Evolution Analysis curves of polyimide film Kapton. 12.5µm conditioned at ambient atmosphere. See the text about the meaning of each alphabetical sign.

Fig. 2 Change in glass transition temperature of vitrified polyethylene terephthalate film as a function of absorbed water content. The two broken lines are calculated from the equations 1, 2 in the text.
1.3 高分子—水系の融解転移

高分子結晶の融解転移は、部分融解—再結晶化などといった、低分子結晶からすると一見特異的な挙動を示すことがある。しかし、これらは、一つの分子が非常に長いことに起因する間欠的な結果であって、本質的には低分子結晶と同様の熱力学的な一次の相転移であることは疑いない。当然、不純物による融点降下もこの枠内で取扱うことができる。以下では、高分子結晶の水による融点降下を観察した例を示す。

一定の長さに切った結晶化度41%のナイロン6繊維を、温度20℃、相対湿度0%（0%）、65%（2.8%）および100%（5.7%）の蒸気雰囲気で調湿する。

() 内は、調湿試料の乾燥試料基準の水分率である。これを所定のシリコン油浴にすばやく浸漬し、10秒後に取り出して、熟処理後の長さを測定する。このようにして求めた収縮率を、熟処理温度に対してプロットした結果がFig. 3-（a）である。

まず、0％乾燥試料の熱収縮率曲線に注目する。詳細な別報に譲るが、この曲線の内側が最急にならんでいる温度すなわち190℃が、DSCで測定されたこの試料の結晶の融点に近い。すなわち、結晶が融解すると、分子鎖の配向が乱れるために、試料は大規模に収縮する。これに、この大規模収縮が起きる温度を測れば、結晶の融点がわかるということになる。上記のナイロン6の融点（190℃）が、通常知られている融点（230℃）より低いのは、試料に固有の完全度の結晶の融点を問題にしているためで、これはこのことは大して重要ではない。一般的に、高分子結晶は熱力学的に不完全であり、不完全度に応じて融点を下げることが融点を実測するには、特殊な処理を試料に施した後、DSC測定を行なう必要がある。

さて、Fig. 3-（a）の残りの2本の熱収縮率曲線は、水分率が高くなるにつれて、0％試料の曲線と同じ形状を保ちながら低温に移行している。特に高水分率の低温移行は、上記の説明によれば、水の存在のため、試料の融点が下ろしたことを示唆するものである。そこで、結晶—非晶の2相モデルを考え、水は非晶部
にしか入れないとして、高分子-水系系に関する Flory 式によって測点低下度（ΔT_m）を求めている。ΔT_m は、水が 3.2%の試料で 22℃、5.7%の試料で 40℃である。そこで Fig. 3 の曲線の 65℃の変調試料の曲線を 22℃、100%の曲線を 40℃上、それぞれ水蒸気で昇温させた。その結果が Fig. 3 の（a）である。2 本ともは完全に 0%試料の曲線に重なる。この重複性は、より温く、試料性分子中に存在する水は、共存-phase 形で相を形成して水の融点を下げて不溶物を再結晶することを意味するものである。なお、熱変調によって測定された引張り強度保持率（Fig. 3 の上部）も同様の重複性を示す。

ここで、融点を知るのに水収縮という間接的な手段によったのは、水分によって低下した水不完全結晶の融点を、DSC で直接観測するのが難しいためである。

1.4 高分子ヒドログラム中的水の溶解性

2 项 3 項では、高分子-水の混合系を、高分子個体から観察して水の状態を知ったが、含水率が大きい試料の場合には、水を直接調べることができ、その一例として、市販の人工腎臓に組み込まれている PMMA ヒドログラム中空系膜を挙げることができる。該膜には 50%以上の水が含まれており、この水の状態分析を DSC と NMR で行ったところ、融点 0℃の自由水と不水素水の両に、透析機能を保持する微細孔中に、低融点の自由水が存在することを示した。また、この研究課題で、熱分析により細孔径分布測定法（Thermoporosimetry）が開発され、また現在でも改良が進行中である。これらの結果は、第二話者に引続いてある。

高分子-水系の状態分析の研究段階として、今後もマクロ性という利点を持つ熱分析法が活用されることが望まれるが、それには測定技術の工夫・向上とデータの高分子性レベルでの解析が必須と考えられる。これらのことは全ての分析法に通通することはあり、測定コントロールが正しく有効情報を結びつきにくい熱分析に対しては、特に強調されるべきであり、また他の分析法に比して、それらが引き込む余地が大きい、というのが演者の経験の言わしめる所である。

なお、2 項で、Couchman 式を PET-水系に適用するために当って、水の ΔC_p を 1986 年の Seki 的文献値に依ったが、これを通じて、得られない基礎研究を行うことの重要性を痛感した。演者も、後世の研究者らからこのように思われる仕事をすべく、努力を続ける所存である。

参考文献

2) 例えば、川崎笠子、米川孝治 "熱測定の進歩" Vol. 2, 37 (日本熱測定学会編、科学技術社、1984).
7) 十時 廣, 川口元雄, 熱測定 12, 2 (1985).
8) 十時 稔, 川口元雄, 高分子論文集 32, 363 (1975).

2. 水の融点を利用した人工腎臓用

石切山一彦

PMMA ヒドログラム中空系膜は、現在、人工腎臓用として盛んに利用されているが、膜構造を解析する手段は少ない。膜中に存在する細孔径が小さいことが、素未が研究性のために急速に変化させると構造が適応されることが、その理由により、水銀圧入法、ゲス吸着法、電子顕微鏡観察などの乾燥試料を対象とする方法が適用できないからである。結局、この膜に対して適用できるのは、水や溶液の透過度性能を解析する方法であろうが、その場合でも、角膜状細孔が存在するか仮定し、かつ数 nm のオーダーの細孔まで Hagen-Poiseuille の法則が成り立つ、などの種々の仮定のもとに細孔径分布が算出されており、得られた細孔径の絶対値の信頼性に関しては確証のいない状態であった。

このような背景の下で、我々は膜中に存在する水の融点が低下する現象を DSC で見出し、これを利用して膜構造を解析する方法を検討している。その結

Use of the Melting Point Depression of Ice for Determination of the Pore Size in Hollow Fiber Membranes for Artificial Kidney.

*Kawasaki Research Center: 〒520大阪市住吉区山田 3-3-7
Kazuhiko Ishikiriyama, Toray Research Center, 3-3-7 Sonoyama, Ohtsu, Shiga, 520.
果、DSC 曲線から細孔径分布曲線に変換できることにより、さらにその結果は水の透過性から得られる結果とよく一致することなどが判ってきた。

2.1 測定

アイソタクティック PMMA とシンジオタクティック PMMA を 1:2 または 1:5 の混合比で DMSO 溶媒に加熱溶解させ、冷却してゲル化（凝固）した後、水中に浸漬して DMSO から水へと溶媒交換することによってステレオコンプレックスからなる PMMA デュアゲル中空系膜を得た。この中空系膜を水に浸けたまま約10mgを密閉型試料容器に入れ、DSC 測定に供した。測定温度範囲は -60℃〜室温、走査速度は DSC 曲線の走査速度依存性を考慮して 0.31℃/min とした。

2.2 結果

DSC 測定結果を Fig.1 に示す。冷却一昇温一昇温の過程においても、中空部分に存在する通常の水（バルク水、図中のハッチ部分）の他に、通常の水よりも溶点と凝固点がともに低下している水（黒塗り部分）に よるヒークがみられる。ここで、凝固ヒークが溶解ヒークよりも低温側に位置しているのは冷却一昇温過程のためと考えられるので、以後の解析には溶解ヒークのみを用いることにした。

PMMA デュアゲル中で凝固点降下している水の分子 運動性が自由水と同じ程度であることとは、NMR によ る分子の回転の相関時間の測定および比熱の測定から確認済である。したがって、この凝固点降下は、

化学的な束縛効果によるものではないと、水が膜中に存在する細孔に閉じ込められたためと考えることができる。

そこで、透水性能の異なる実際の製品レベの PMMA 中空系膜について DSC 測定と透過性測定を行い、両者の結果を比較してみた。Fig.2 にその結果を示す。融解ピーク温度 \(T_p \)が低下するにつれて透水性 \(L_p \) が低下、 \(L_p \) が透水係数が低下する傾向がみられる。これは、孔径が小さいほど透過抵抗が大きくなるために透水性が低下するという流体力学の法則 (Hagen-Poiseuille の法則) に対応している。

2.3 細孔径の算出

DSC 曲線の横軸と縦軸をそれぞれ変換することによ りて細孔径分布曲線が得られる。また、透水性か ら Hagen-Poiseuille の法則の成立を仮定すれば、細 孔径 \(R_p \) が計算できる。そこで、DSC 曲線から算出した細孔径分布曲線のピーク半径 \(R_{sec} \) と \(R_p \) を比較した その結果を Fig.3 に示す。両者は、それを求める理論 的背景は全く異なっているにもかかわらず、よく一致することができる。また、同様に、透水透過性 (High Flux H.D., 高圧水透過性、H.F., 部分透水透過性 Protein Permeable H.F.) の順に細孔径が大きく、各製品とも期待ど

Fig. 1 Typical DSC curves of PMMA hollow fiber membranes saturated with water for artificial kidney of hemodialysis.

Fig. 2 Melting peak temperature \(T_p \) of capillary water vs. water permeability \(\lambda L_p \) for PMMA membranes : ○ Homo - PMMA composed of pure methacrylate monomer unit as to isotactic and syndiotactic PMMA : ● Co-PMMA composed of isotactic PMMA and syndiotactic PMMA copolymerized with sodium-p-styrenesulfonate.

Netsu Sokutei 18(4) 1991
3. Super-Coolingによる相転移温度評価の問題点

奥居德昌

適合せから現状（バルク）水を結晶させる場合、水中に含まれている不純物や、高分子水が共存している環境によって結晶化速度は著しく変化する。例えば、毛細管中やセル中における自由水および水準水は、結晶化速度に大きく影響を及ぼすが、オゾン分解やガラス転移温度にも大きな変化が観測される。バルク水の結晶化において、結晶化速度を左右する因子として、結晶の表面自由エネルギー（σ），分子の拡散運動に基づく活活性化エネルギー（ΔE）が考えられる。さらに、分子の凝集力に基づく結晶の熱解離（ΔHm）の3つが考えられる。自由水の結晶化速度のデータを基に、これらの因子を評価し、結晶化データを解析するに際して、

\[\Delta H_m = 0.167, \quad \Delta E / \Delta H_m = 3.41, \quad T_{max} / T_m = 0.86, \quad T_{max} = -37^\circ C \] が得られる。ここで、σは結晶の表面自由エネルギーの平均値、T_{max}はFig. 1に示されるように極大結晶成長速度における結晶化温度である。水の結晶成長速度は非常に速いため、このT_{max}を実験で観測することが出来ない。Turnbullが行った従来の水滴における核生成速度の実験で、σ/ΔH_m = 0.3と報告されており、核生成速度における表面自由エネルギーは核形成における値より小さいことが示される。自由水や環境水の結晶化において、この表面自由エネルギーの値は大きく変化する。実際に、ザングクル中にある水の結晶化では（水分率＝水の重量／乾燥ザンクルの重量＝1の場合）、σ/ΔH_m = 0.09と小さくなり、T_{max} = -21^\circ Cと見積られる（Fig. 1）。水の結晶化においては、気相からの結晶生成には長くから詳しく研究されているが、バルク水の結晶化はあまり行われていない。ここでは、結晶化データを解析する場合、表面自由エネルギーを拡散に基づく動活性エネルギーを独立に評価することが出来、詳しく評議することが出来ると考えられる。

文献
1) 石切山, 十時, 小林, 武山, 丹沢, 第34回高分子討論会, 2645 (1985).
2) 石切山, 坂本, 十時, 第26回熱測定討論会, 44 (1990).

On Determination of Phase Transition Temperature by Super-cooling.

*東京工業大学工学部：〒152目黒区大岡山2−12−1
Tokumasu Okui, Faculty of Engineering 2−12−1
Ohokayama, Meguro-ku, Tokyo 152.
Fig. 1 Relationship between crystal growth rate (G) and crystallization temperature (T_c) of bulk water (A) and bound water restrained in xanthan hydrogels.

Fig. 2 Relationship between melting temperature (T_m) and crystallization temperature (T_c) of bulk water and bound water restrained in xanthan hydrogels. $W_w =$ water content, g/g

文 献

4. 細孔内凝縮水の密度

近沢正敏*

水溶性無機粉末と水蒸気の相互作用、すなわち吸湿、潮解、固結、あるいは不着、凝集についての界面化学的考察が私の最初の研究テーマであり、それ以来水との関わりを持って今に至っている。取扱う物質が異なっていることをワークショップに伺わ、内容的には非常

Density of Capillary Water.

* 東京都立大学工学部工業化学科：〒192-03 東京都八王子市南大沢 1-1
Masatoshi Chikazawa, Department of Engineering Chemistry, Faculty of Engineering, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-03

Netsu Sokutei 18(4) 1991

- 232 -
に大きな期待をもって参加させて頂いた。最近の科学技術の進歩を支えている各種機能性材料、高性能材料において高分子材料は重要な位置を占めている。その高分子の複合材料において各種の無機粉末が利用されている。したがって、無機粉末材料を扱っている者にとって、新しい複合材料を創製するためにはより一層の研究交流の重要性を感じる最近である。今回のワークショップに参加して高分子材料において各種の現象や材料の構造と物性に、水分子が多大な影響を与えていている事実を改めて認識したと同時に、熱分析を主な研究手段として活用し、非常に高度な議論ができる点に非常に感激を受けた。最近熱分析を試みている者にとって有意義な一日であった。

私の研究は界面域における水の構造と物性に与える固体表面の影響、あるいは固体表面の作用力の及ぼす範囲等を調べてきたが、1年程度前より熱分析による検討も試みている。熱分析がダイナミックな測定であり、試料量や試料の形状、充填の仕方、熱履歴や昇温速度、その他の、試料の前処理や測定条件の違いによって測定結果が微妙に異なり、その解釈に非常に苦労している。一方では熱分析ならではの特徴ある結果が得られる。今回のワークショップではその点で大変参考になった。また参加者全員が多数あったにもかかわらず、実質的な議論ができた事も参加者にとって非常に有意義なワークショップであったと思う。

各講演の先端的研究内容については、それぞれの報告を参照して頂くこととし、ここでは当日の講義で話題となった固体表面に接した液相の物性についての実証データを紹介したい。

細孔内に毛管凝縮した液体の構造と物性が固体表面の影響を受けパルクの液体のものとは異なることが知られている。ここでは一例として細孔径の大きさの変化につけ液体の密度が変動する点について述べる。

試料として96％SiO₂成分よりなる黒質ガラス（Corning No.7930比表面積：200m²/g 細孔容積：28Vol％細孔半径20nm）を粒径2～4mmに粉碎したものに使用した。またこれを1％HF水溶液に適当時間処理し、表面を乾燥させ細孔径を増加させたものも使用した。試料の加熱処理は10°mmHg以下の減圧下、180℃で4h行った。細孔容積、細孔分布はそれぞれ液体窒素温度におけるN₂の吸着等温線および吸着等温線より求めた。Fig.1にN₂の吸着等温線および細孔分布を示す。細孔分布は飽和等温線より求めたが、非常に均一な单一分散の細孔分布を示す。またP/P₀＝1におけるN₂吸着量と、液体窒素温度における密度の液体密度より細孔容積を算出した。ここでP₀は測定温度における液体の飽和蒸気圧である。等温線の形状から明らかのようにP/P₀＝1における吸着量は正確に求めることが可能である。

最初に試料のN₂吸着を測定し、次に減圧後他吸着質の吸着等温線を測定する。したがって同一の試料を用いた訳であるから、吸着質が異なるにも関わらず、細孔容積を求めることが可能である。N₂吸着によって求めた細孔容積を正しい値として、別の吸着質の吸着等温線と計算する。これら結果をFig.2に示す。細孔径は小さいと固体表面の作
Fig. 2 Relation between d/d_0 and pore radius
○ H₂O, △ CH₃OH

用有力による細孔径の細孔径の構造はバーチの密度 d と異なり、その密度はバーチの值より小さくなっている。細孔径が大きくなると固体表面の作用力の影響は相対的に少なくなるため凝縮体の構造と物性はバーチの液のそれに次第に近づくことになる。密

度変化の大い吸着質は水、次いでメタノールである。メタノールの

水分子の特徴として、三次元的水素結合の形成可能

な構造を挙げることができる。この点は固体の作用力が大きくなるので、メタノールは水素結合の形成は可能であるが、メタノールには存在するので水のような三次元的水素結合は望めない。それゆえに凝縮体の構造と物性における固体表面の影響は大きくおきならないことになる。水の場合では約45%の細孔径でバーチの水と同一の密度になると推定される。しかしながらFig. 2の結果は、固体表面の質の違いについての議論は抜きにしてある。

HF水溶液によって細孔径を拡大させた場合の細孔径の

表面は、水処理試片の表面より表面水酸基量が多い。

同一細孔径の試料を種々の温度で加熱処理し、表面水酸基量を変化させた場合、凝縮体の密度は表面水酸基量が多いほど大きくなることは確めている。また試料表面をアルコール類やシラン類で処理し、適合的に酸水性にすると、水吸着による測定で細孔容積は約半分となった。これは表面の水溶性が変化し、部分的に毛

管凝縮が起こっていると解釈しないかぎり説明がつかない。以上固液界面領域で液体の物性は変化しており、その変化量は、液体の極性、水素結合形成の有無によって異なるようである。これらの詳細な点については目

下検討中で、別の機会に述べたいと思う。

5. 高分子膜の束縛水と分離能の関

係

中島立子、広津敏博

分離用高分子膜はいろいろの種類が知られている。

我々は、いままで、親水性の高分子膜、主としてセル

ロースおよびその誘導体の中空糸やゲル膜について、

試料の調製法の検討を兼ねて膜中に束縛された水の熱

分析、NMR測定などを行った。他の種類の分離

膜中の水の熱分析については既に報告があり、自由

水の他にかなり多量の束縛水が観測されている。

セルロースのDSCによる解離曲線は種々のヒドロゲ

ルのそれと類似しており、自由水の解離ピークの低温

側にサブピークが観測される。Fig. 1にセルロースゲ

ル膜中に束縛された水の解離曲線を示す。水分率

$W_{w}(W_{w} = \text{水の重量} / \text{乾燥試料重量}, \text{g/g})$ を減少させると、低温度側のサブピークがだんだん減少する。この低

温度側に観測される水は熱的に不安定で、熱処理によっ

て、その量は変化する（21）。

多糖類の膜は、水中で柔らかく、形態安定に乏しい

きらいがある。我々は市販のホリプロヒレン（ポリ）多

孔膜に種々の親水性モノマー（ヒドロキシルアクリ

レート＋アクリル酸、または＝メタアクリル酸）をフ

ラスガ照射によりグラフト重合して、いわゆる PP を親

水性高分子でできえた膜を調製した。

この膜中の水の解離エンタルピーから不凍水量

W_{w} を測定すると、グラフト膜の増加と共に W_{w} が

増大した。この膜を用いてアルコール（E）と水（W）

の混合溶液の分離を試みた。分離能（W_{w}）はパーセン

テージ法によって測定した。即ち、一定成分比

Y_{w} / Y_{E} をもつ混合溶液を膜の両側より供給し、膜

の反対側を真空にひいて、通過してきた溶液の成分比

X_{w} / X_{E} で調べた。分離能は、

Relation between the Bound Water in Polymer Films and Their Separation Capacity.

* 細繊高分子材料研究所：〒305つば市津1丁目1

-4

Tatsuko Hatakeyama and Yoshihiro Hirotsu,

Research Institute for Polymers and Textiles, Higashi 1-1-4, Tsukuba, Ibaraki 305

(324)
6. ゲル中の水のCompartmentalization

高分子ゲル中の水の凍結挙動が水溶液の凍結挙動と異なると考えられる点は、
Ⅰ 高分子鎖が不均質核生成の触媒として作用し、凍結しやすくなる
Ⅱ キャリラリー効果により凍結しづらくなる
Ⅲ 網目構造が水分の拡散を抑えるため、水晶成長速度が低下する
の三点をまとめることができる[2]。結果のところ、ゲル中の水が凍結しやすくなるか、しにくくなるかははっきりしないし、マトリックスを形成する高分子の性質にも依

Compartmentalization of Water in Polymer Gels.

* 東京電機大学理工学部化学教室：〒350-03 埼玉県比企郡熊谷町石坂
N. Murase, Laboratory of Chemistry, Faculty of Science and Engineering, Tokyo Denki University, Hatoyama, Hiki-gun, Saitama, 350-03.
DSCを用いて架橋高分子ゲルを観測され、明らかにされた水の昇温結晶化現象は、この系が含水率として通常のゲルの場合より高いものの、ゲル中の水の凍結挙動が高分子水溶液のそれと大きく異なる例として注目値値する。昇温結晶化現象の解析を通じて、著者らはゲル中の水に対してcompartmentalized waterの概念を提案してきている10-12。ここではcompartmentalized waterの特徴と、その凍結挙動に影響を与える因子を整理しておくことにしたい。

Table 1 Water in heterogeneous systems

| Continuous phase water |
| Compartmentalized water |
| Discrete water |

Compartmentalized water とは、水分子の集団が高分子鎮によって“区画化”されているとみなすものである。compartment間で水の拡散移動は抑制されているが、全く起こらないということではなく、水分子の集合はcompartment間で運動と不連続の中間状態にあるとみなすことができる。連続とみなすか不連続とみなすかは、凍結挙動においては、冷却速度との兼ね合いによって決まる。

即ち、急性冷却による温度低下、それに伴う分子運動の急激な低下に対して、個々のcompartment内の水分子集合は互いに不連続で、独立して凍結（水相生成および水相成長）あるいは不結水化する。一方、徐冷に対してはcompartment間で水分子集合は連続的とみなすことができ、凍結挙動はパルクと変わりなくなる。従って、不均一系の水はTable 1に示すように、連続な水、不連続な水の他に、その中間と考ええるcompartmentalized waterを考えるのが妥当ではないかということになった。

Table 2 Factors determining freezing behavior of compartmentalized Water.

| Compartment size |
| Continuity of water between neighboring compartments |
| Flexibility of polymer chains |
| Hydration property of polymers |
| Water content |
| Cooling rate |

ゲル中の水の構造変化—アガロースゲル中の水に対する糖およびポリオールの影響

7. ゲル中の水の構造変化—アガロースゲル中の水に対する糖およびポリオールの影響

東成勝好*, 渡部峰男**

ゲル中の水の存在状態は主としてDSCとNMRなどによって研究されてきた。これまでにも興味深い報告も著しくあり、纸数の制限をもって、著者の研究を含めないので、ここではアガロースゲル中の水の挙動を紹介した。

Structural Change of Water—Effect of Sugars and Polysols on the Water in Agarose Gels.

* 食品総合研究所食品理化学部：〒305つくば市綿生台2-1-2
** 静岡大学教養部：〒422静岡市清水386
Katsuyoshi Nishinari, National Food Research Institute, Kamomaidai, Tsukuba, Ibaraki 305.
Mineo Watase, Faculty of Liberal Arts, Shizuoka University, 836 Ohya, Shizuoka 422.
水の状態が糖およびポリオールによりどのように影響を受けるかについて、低温DSCによる研究を中心に述べる。

アガロースゲルはアガロピケチンと共に寒天の主成分であり、寒天ゲルの力学的性質を決めていると考えられている。これまでアガロースゲル中の水はほとんどがいわゆる“自由水”であると考えられてきた。一方、セルロース中の水について、低温DSCにより不凍水、凍結する結合水、自由水の量が決定された。著者らはアガロースゲルも高濃度の場合には、セルロースの場合と同様、低温過程において、自由水の凍結温度より低温度側に、結合水の凍結に伴うDSCピークが観測できるかもしれないと考えた。40% (W/W) アガロースゲルの昇温DSC曲線をFig. 1に示す。DSC昇温曲線は-45℃〜-30℃付近でベースラインから吸熱側へずれ始め、昇温するにつれてさらに吸熱側へずれ、-7℃〜-1℃付近で鋭い発熱ピークを示した後、直ちに凍結したパルク水の融解に伴う鋭い吸熱ピークを示す。この温度Tmは昇温速度にはあまり依存せず、approximately 0℃である。-45〜-30℃付近でベースラインからずれ始める温度は昇温速度の増加に伴い高温側へ移動することから、一次の相転移ではなくガラス転移であると考えられる (Tg)。一般に、ガラス転移の場合、比熱はステップ状に変化するが、アガロースゲルの場合、それほど急激な変化は示さない。さらに、-7〜-1℃付近の鋭い発熱ピークを低温結晶化 (cold crystallization) に起因するものと考えられる (Tc)。これは、ガラス転移の温度以上の温度でアガロースゲルウェーブ系の分子運動が活発になり、融解解の前に最も安定な構造をとろうとして再配列するために出現するものですとされる。

低温域においてFig. 1と似た形の昇温DSC曲線はポリビニルピロリドニン水系、テキストラン水系などについても観測されている。

昇温速度が一定の場合、低温域における昇温DSC曲線のアガロースゲル濃度依存性をFig. 2に示す。Tgは濃度の減少とともに高温側へ移動している。このこととは、水を可塑剤と考えると、一般的高分子系についての結果を可塑剤の量の増加に伴い、Tgは低温側へ移動すると考えられる。しかし、融解パルク水の融解ピークの面積を比較すると、高分子ゲルの方が大きくになっている。30%ゲルの方が50%ゲルより70〜50=1.4倍以上に融解したパルク水は可塑剤として作用できず、むしろ低温側ゲルの方が可塑剤

Fig. 1 DSC heating curves of 40% w/w agarose gels. Figures beside each curve represent the heating rate in °C/min. Samples were quenched from room temperature to -120°C using liquid nitrogen.
Fig. 2 DSC heating curves of agarose gels of various concentrations. Figures beside each curve represent the concentration of agarose gels in % w/w. Samples were quenched from room temperature to −120°C using liquid nitrogen, and then heated at 2°C/min.

Fig. 3 DSC heating curves of 40% agarose gels with and without sucrose: (a) 0; (b) 0.2; (c) 0.5.

それによって、可塑剤としての糖－水の含量はスクロース－アガロース－水系においてのそれが、グルコース－アガロース－水系ではリポース－アガロース－水系においてより多く、Tgはスクロース－アガロース－水系において最も低温になることが理解できる。

糖のかわりにホリオールを添加したアガロース－水系ゲルではどうなるか。エチレングリコール、グリセリン、プロピレングリコール、ソルビトールを添加した場合、いずれの場合も糖の場合と同様、ホリオール濃度の增加に伴い、Tgは低温側へ移動した。いずれの場合も凍結パルク水の融解による吸熱ピーク面積は糖濃度の増加に伴い減少している。

したがって、可塑剤として作用しうる糖－水の量は糖濃度の高い場合の方が多いと考えられる。そのため、糖の添加により、Tgは低温側へ移動したものと考えられる。

0.5Mの糖を含む40%アガロースゲルのTgはスクロースの場合−59.0°C、グルコースの場合−49.5°C、リポースの場合−59.0°Cであった。これらの値1モル当りの不凍水量はそれぞれ191.5g、73.8g、73.5gであった。
第11回熱測定ワークショップ報告熱分析で“探る”シリーズ2 高分子－水系の相互作用

g である**。したがって、糖の場合と同じとすれば、可塑剤としてのボリオール－水の含量はエチレングリコール－アガロース－水系が最も多く、ソルビトール－アガロース－水系が最も少ない。もしそうならば、エチレングリコール－アガロース－水系の T_n が最も低く、ソルビトール－アガロース－水系の T_n が最も高くなるはずである。しかし、上記のように、現実はこれと逆の順序となった。

糖とボリオールではアガロースゲルの力学的、熱的性質に対する影響が異なるために、上記のような結果が生じたと考えられる。糖をアガロースゲルに添加すると、ゲルの弾性率は増加し、室温以上での昇温 DSC 曲線に現れるゲル→ノル移動に伴う吸熱ヒーク温度は高温側へ移動する**のに対し、ボリオールを添加すると、ゲルの弾性率は増加するが、ゲル→ノル移動に伴う吸熱ヒーク温度は低温側へ移動する**。これらのことより、糖の添加により、アガロースゲルの架橋領域の数が増加し、熱的に安定な構造になるのに対し、ボリオールの添加により、アガロースゲルの架橋領域の数は増加するが、その構造は熱的に不安定なものになると推測された。さらに、糖を添加したアガロースゲルの弾性率の高分子（アガロース）濃度依存性の Oakenfull 理論による解析**および同系の昇温 DSC 曲線のシッパーモデルによる解析**により、糖の添加により、アガロースゲルの架橋領域の数は増加し、架橋領域の分子量は減少し、（架橋領域をシッパと考えて）シッパを形成するリンクの回転の自由度が増加すると考えるならば、リンクの結合のエネルギーが減少することが示唆された**。

以上のことを、要約しておくと、糖もボリオールもアガロースゲル中の凍結し氷の水を減らす。そのため、系が可塑化され、アガロース分子鎖の運動が活発となり T_n が低温側へ移動する。糖の場合、凍結し氷の水を減らすが、ゲルの架橋領域との直接的な相互作用よりも重要だと考えられる。スクリューはゲルコースやリポースより凍結し氷の水をより多く減らすので、T_n を最も低温側へ移動させる。ボリオールの場合、アガロースゲルの架橋領域の構造を不安定にするうことから、凍結し氷の水を減少させることよりも重要なと考えられる。長い鎖のボリオールの方が短い鎖のボリオールより酸橋領域を不安定化させるようにと思われる。このため、エチレングリコールの方がソルビトールより多くの水を凍結化するのに、ソルビトールの方がエチレングリコールより T_n を低温

文献

2. 上原 恒, 「ハイドロゲルと水」（西成出版, 矢野俊作編, 「食品ハイドロゲルの化学」朝倉書店 pp. 7-22）（1990）.
4. 渡辺泰男, 「海藻多糖類の構造と機能特性！」（西成出版, 矢野俊作編, 「食品ハイドロゲルの化学」朝倉書店 pp. 123-138）（1990）.

Netsu Sokutei 18(4) 1991 - 239 -
8. 凍結ゲルのガラス転移に及ぼす Amorphous Ice の影響

吉田博久*

1. 多糖一水系のガラス転移

多糖一水系の水は不凍水、束水、自由水の三種類に分類される。束水は凍結状態であり、系の熱履歴によっては不凍水や自由水を示す。Fig. 1 にヒアルロン酸(A), ザントリン(B), フルラン(C)の種々の水分率 [W = (水の全重量)/ (試料重量)] の DSC 昇温曲線を示す。それぞれの曲線は 10K/min で室温から 150 K まで冷却した後に昇温した。縦軸は各軸が見やすいように任意の値で拡大してある。ガラス転移を矢印で示している。フルランの W = 0.41 での試料で典型的なガラス転移による熱容量 (C_p) のジャンプと、冷却中に緩和したエンタルピーの回復が観察される。冷却された系の W = 0.41 での観察された温度 (T_g) は低下し観察されるようになる。凍結水が存在しない W = 0.41 では、W = 0.41 での試料と同様に観察されることが示されている。このガラス転移の温度 (T_g) は、W = 0.41 での試料と同様に観察され、このガラス転移の温度 (T_g) は、W = 0.41 での試料と同様に観察される。

凍結水が存在する W = 0.41 においても、T_g は W = 0.41 の実測値に比べて小さな値を示すようになる。これからの系では、高い W = 0.41 になると結晶化した水の量が多くなるので、ガラス転移は DSC では測定できない。この系が W = 0.41 で示されるように、W = 0.41 の系かつ束水の状態である。ガラス転移は DSC では測定できない。この系が W = 0.41 で示されるように、W = 0.41 の系かつ束水の状態である。

2. Amorphous ice の形成と再結晶

この発熱ピークは冷却過程で結晶化しなかった水が昇温過程で結晶化することによって生じたものである。発熱ピークを示す試料を、昇温過程で凍結させた温度まで一度昇温した後に 130K まで冷却し、再び昇温測定すると再び発熱ピークは示さない。また、同一試料を昇温し T_g は高温側にシフトし T_g での C_p のジャンプ (ΔC_p) は小さくなる。発熱ピークの面積と水の融解熱から、この発熱ピークで結晶化する水の量を求め、さらに上で述べた熱処理前のΔC_p の差から、カスール転移に関与している水のΔC_p は純水で報告されている値よりもはるかに大きい。W = 0.41 に次第に減少し純水の値 (1194 J/g) に近づく。このことから、昇温過程で観察される発熱ピークは、冷却過程で生成した amorphous ice が結晶化することによって生じていると考えられる。Amorphous ice が生成する W = 0.41 で観察される発熱ピークの閉鎖性はヒアルロン酸が最も広く、生成した amorphous ice の量も多い。

多糖のすべての吸着サイトに不凍水が吸着した場合、ヒアルロン酸では W = 0.51 の T_g と ΔC_p の値ならびに純水の値 (T_g = 135K) を用いて、二成分系の T_g に関する次式に適用し計算値と実測値を比較すると良く一致した。

\[
T_g = \phi \Delta C_p \phi + \Delta C_p \phi + \phi \Delta C_p \phi + \phi \Delta C_p \phi
\]

ここに、\(\phi\), \(\Delta C_p\), \(T_g\) は各々1成分の重量分率、\(\Delta C_p\), \(T_g\) を示し、添字の 1, 2 は各々不凍水がすべてのサイトに吸着した多糖と amorphous ice を示す。従って、amorphous ice が共存している系では、ガラス転移は不凍水が吸着した多糖と amorphous ice の協同的な運動によって起こると考えられる。T_g が極小値を示した後に上昇するのは、冷却過程で生成した水の結晶化に伴いガラス転移が阻害されるためである。詳細な議論は文献 23) を参照していただきたいが、ヒドロゲルや多糖一水系で観察されるガラス転移現象に関与している要素を Fig. 2 にまとめた。

Effect of Amorphous Ice on the Glass Transition of Frozen Gels.
* 東京都立大学工学部工業化学科：〒192-03東京都立大学工学部工業化学科
Hirohisa Yoshida, Department of Industrial Chemistry, Faculty of Engineering, Tokyo Metropolitan University, 1-1 Minami Osawa, Hachioji, Tokyo 192-03
9. ゲル中の水について

山内愛造

ゲル成型として、長い間、ゲルの合成と構造、機能と応用について、特に医用材料やバイオテクノロジー用途について仕事をしてきたが、ゲル中の水は常につきまとう問題であった。今回のワークショップでゲル中の水についての疑問が解消した訳ではなく、むしろ一層複雑で判り難くなかった気持する。しかし、こんなに長い間、われわれの最も身近な水のことについて論じ合っていなくても判らないことだらけということには、また魅せられて深入りしそうな気がする。

放射線架橋したPVAハイドロゲルをDSC測定すると、拘束水部分に角が生えたようにヒークが観察された。昇温速度を変えたり、チャートの描画速度を変えたりして目立たないようにしてきたが、最近、畑山らが拘束水に種類があると発表し、日変化に遅れが浮かんだなと感じている。

ゲル構造と機能について、我々は微小環境効果に注

文献

1) 吉田博久、畑山貢子、中村邦雄、畑山直雄、高分子論文集、46、597 - 1989
2) H. Yoshida, T. Hatakeyama and H. Hatakeyama, Polymer 31, 693 - 1990

On Water in Gels.
* HOYA (株)メディカル研究所：〒367-02埼玉県児玉郡児玉町共栄南共和350-7
Aizo Yamauchi, HOYA, LTD., Medical Institute, 350-7 Minami Kyowa, Kyoei, Kodama-Cho, Kodama-Gun, Saitama 367-02

Netsu Sokutei 18(4) 1991 — 241 —
10. 蠶の紡糸機構と水

馬越 淳

繊糸を作る蠶は、桑の葉を食べ、タンク状を体内で合成、紡糸し、糸を作る。天然衣料用素材の繊維は合成繊維と比較し、多年的優れた特長を持ち、優れた繊維となる。蚕がつくる細長い糸は高速紡糸、複合紡糸、液晶紡糸、メルマール紡糸などの紡糸技術を巧みに効率よく取り入れ、しかも最も少ないエネルギーで作られている。この優れた自然の紡糸方法を解明する一つの手段として熱測定を行い、蚕の紡糸のメカニズムを明らかにした。

まず、蚕の紡糸機構について述べると、蚕粒を作るのは孵化し4回脱皮した15日目5輪となり、多重に桑の葉を食べ破受後に（21日目）、蚕体が透明となり、その後、蚕は繊糸を行う。蚕体内には繊糸の原料となる液晶タンク状を作る1対の糸腺がある。この糸腺は3つに区分され、フィブリン（繊維の原料）から合成される短さの異なる紡糸腺とセリシン（にかわ状）を合成する糸腺とフィブリンタンク状を分子配向させる短さの異なる短さの異なるコーターを持つ前部糸腺である。後部糸腺で合成された液晶フィブリン（繊維の原料）はrandom coilの分子形態を持ち、濃度12%の水溶液であり、一部α helixを含み、水を含んだゲル状である。後部糸腺で合成されたフィブリンゲルは中部糸腺へと移動し、ここで、フィブリンの溶媒としての割りをするセリシンゲルに含まれる。中部糸腺内の液晶ゲルの濃度は約30%で分子形態はα型の結晶を多数含む、ゲル状となり先端の前部糸腺に移動する。これにともない、液晶のpHは後部糸腺、中部糸腺、前部糸腺に逐次に低下する（Fig. 1）。

次に、蚕の紡糸糸の絡みは液晶状態になっている。紡糸中の蚕体内の前部糸腺内の液晶ゲルを取り出して偏光顕微鏡で観察すると、ネマチック相の液晶状態である。この液晶を急激に伸長すると伸長流動が生じ、繊維化が起こる。繊維化は前部糸腺の前方にある吐糸腺で行われる。吐糸腺（合成繊維のノギル部分）は共通部、吐糸部、吐糸部の3つの部分からなり、吐糸部内の2つのキチン板（ノギル）を通して4つの筋肉でキチン板を動かして液晶状の絡みは固定される。この筋肉でノギルの穴の大きさを調整し、液晶の絡みを保持し、すでに蚕の体外に出た固定された糸と蚕自身の力で液晶延伸させて繊維化が形成される。この時の糸の延伸速度は6～10mm secである。

繊維化がゲル化の原因を原子吸光法により、糸腺内の液晶絡みを測定し、糸腺内部の前部、中央、後部の液晶絡みの金属イオンの変化を調べるとカルシウム

Role of Water in the Spinning Mechanism of Silkworm

* 農業生物資源研究所：〒365つくば市筑紫台2-1-2
Jun Magoshi, National Institute of Agrobiological Resources, 2-1-2 Kannondai, Tsukuba, Ibaraki 305
イオンは前区にいくに従い含有量が多くなるが、カリウムイオンは一定である。再生繊フィブロイン水溶液を作り金属イオンを含めてゲル化を調べると、1.0 wt%カルシウムイオンを添加し、pHを変えてゲル強度を測定すると、pH4からpH6の間でゲル化を生じた。また、カルシウムの濃度が増すにつれて、ゲルの強度は低下した。次に、再生繊フィブロインの濃度を変えて、温度を変化すると、ゲルの強度は上昇する。これは、細胞内細胞質内の液状体を10℃以下または30℃以上で水分をとらないで放置すると、液状体は増える。これらのことから繊維構造のカルシウムイオンが関与するものと思われる。

そこで、液状体の分子間の水素結合の様子を調べるために液状体内部の液状体を凍結した後、融解過程における融解熱をDSCの熱分析で調べた。後部繊維、中部繊維、前部繊維、液状体の融解エネルギーは270、210、190、189（J/mg）と低くなっている。島田らの方法により溶解エネルギーを求めると、決して、自由水と非定水と分割して求めると、後部繊維、中部繊維、前部繊維の中に非定水は6.9%、11.8%、16.8%、17.6%高くなり、自由水は逆に低下している。これは後部と中続ける繊維の液状体中にカルシウムイオンとカリウムイオンの増加して、このことにより繊維の前方のフィブロイン分子鎖と無機イオンと水とのキレート結合が増加していると考えられる。この水素結合の増加により繊維内のフィブロインがお互いに結合しゲル化が起こる（Table 1）。

さらに、後部と中続ける繊維の液状体はカルシウムイオンとカリウムイオンの増加によって、液状体がゲル化し、後部繊維は細長い管であるためにゲル状では通りにくい、繊維内の前部繊維はpHが低下しているので、液状体ゲルは、キレート結合の一部が解離すると同時に粘度が低下する。粘度が低下した状態で液状体は前部繊維の細長い管のなかで流れ動しながら繊維構造の原子が絡み、流動配向し、繊維になる。この流動を急激に伸長すると伸長配向が起こり、繊維化する。この繊維化する速度は5000 mm/min以上である。

一般に、生物は自然に生命活動を維持し、継続するために何らかの形で自己防衛を行うために進化をし、昆虫である昆虫は幼虫から蛹に成長するとき、養を食べ、多量のタンパク質を合成、分泌、絡繊し、繊維を小枝にしこりと固定し、風雨から蛹体を覆い、外敵から守るために、蛹を作ることは古い年月をかけて巣が生み出した。今までも巣の繊維構造は明らかにさ
Table 1 State of liquid silk in silk gland.

<table>
<thead>
<tr>
<th>Silk Gland</th>
<th>Posterior Division</th>
<th>Middle Division</th>
<th>Anterior Division</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pH</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Viscosity</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>State</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Concentration (%)</th>
<th>pH</th>
<th>Viscosity</th>
<th>State</th>
<th>Conformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6.9</td>
<td>Low</td>
<td>Gel</td>
<td>Random-coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.6</td>
<td>High</td>
<td>Gel</td>
<td>Random-coil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.2</td>
<td>High</td>
<td>Gel, Liquid</td>
<td>β-form</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.0</td>
<td>High</td>
<td>Gel, Liquid</td>
<td>β-form</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.8</td>
<td>Low</td>
<td>Gel, Liquid</td>
<td>β-form</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

れたことはゲル紡糸、液晶紡糸、高解紡糸、自力紡糸を兼ね備えた精密微細紡糸を著者が行い、一番少ないエネルギーで繊維を作っている。著者が長い年月を経て、進化して、精密分裂配列紡糸法を生み出した紡糸法は、今日の合成繊維の紡糸技術の一つの礎となっている。

11. 水によるセルロース高次構造の安定化

中村邦雄

植物材料に由来するセルロースは、繊維やフィルムの形態で、衣料として利用されているだけでなく、産業資材や医療材料など広い分野で利用されている。しかしながら天然セルロースである棉や麻の強度は、湿潤時の方が乾燥時よりも高く、ということ事実は余り知られていない。一般に、天然セルロース以外の多くの材料は、湿潤時の強度は乾燥時よりも低下する。このように天然セルロースだけの持つ湿潤時に強度が増加する理由には、他の材料とは異なる水分子による高次構造の変化と考えられる。ここでは天然セルロースと再生セルロースの乾燥および湿潤時の強度、X線回折ならびに吸着水の熱分析を行い、水分子がセルロースの高次構造に及ぼす影響について検討した。

Fig. 1 に示す（天然セルロース＝Cellulose I）および（再生セルロース＝Cellulose II）の強度と吸着水分量との関係を示す。

図から明らかのように繊の強度は、吸着水分率の増加と共に増加し、約20％で一定値に収束する傾向がみられた。またレーヨンの強度は、吸着水分率の増加と共に減少し、約30％で一定値に収束する傾向が見られた。繊維の形態を顕微鏡で観察すると、乾燥時には捻れて偏平であった形が湿潤時にはまっすぐに円形に近づくことが分かった。X線回折でせん構化度および結晶粒子の大きさの評価では、天然セルロースである時の場合、湿潤時の方が乾燥時よりも結晶化度は高くなり、結晶粒子は大きく

Stabilization of Higher-Order Structures of Cellulose by Water

* 大妻女子大学家政学部：〒102 東京都千代田区 3 番丁 12
Kunio Nakamura, Faculty of Domestic Science, 3-12 Chiyoda-ku, Tokyo 102

Fig. 1 Relationship between water content \(W_c \) (g/g) and relative stress \(\sigma / \sigma_w \).

\(\sigma_w \) : breaking stress of water sorbed samples.

\(\sigma_w \) : breaking stress of dry samples.
第11回熱測定ワークショップ報告熱分析で“探る”シリーズ2 高分子—水系の相互作用

Fig. 2 Heat capacity \(C_p \) of wet and dry cellulose I samples.

Fig. 3 DSC cooling curves of water sorbed on cellulose I and II.

なることが分かった。しかし再生セルロースであるレーヨンの場合は、全く逆の結果が得られた。これは、天然セルロースの場合、セルロースの構造水は水分に、より規則性の高い分子配列に再組織され、再生セルロースの場合は、規則構造がより不規則化した構造へと変化していくことを示唆している。

Fig. 2 に天然セルロースの乾燥時および湿潤時の比熱容量（\(C_p \)）を示す。図から明らかのように乾の\(C_p \)は乾燥と共に温度の上昇と共に高くなるが、湿潤時の方が乾燥時よりも低くなる傾向がみられる。さらに温湿時には\(C_p \)のギャップが80℃付近に認められセルロースのガラス転移（\(T_g \)）が水の導熱効果により低温側に観測されるものと考えられる。

Fig. 3 に天然セルロース乾燥および再生セルロースレーヨンの吸着水のDSC曲線を示す。一定量以上の吸着水を有する場合、いずれの繊維もDSC曲線には自由水の結晶化ピーク（Peak I）とそれより低温側に結晶化可能な束縛水（Peak II）の小さな発熱ピークが観測される。このPeak IIは結晶化度の高いセルロースほど低温側に観測される。また一定量以下の吸着水では、すべての水が不凍水となることが分かった。この不凍水量は結晶化度の高いセルロースほど低くなっ

束縛水=不凍水+結晶化可能な束縛水であるため、乾の束縛水は約19%であり、レーヨンは約25%であった。これより束縛水は強度が一定の値に収束した吸着水量とはほぼ一致することが分かった。このことはセルロースの特性に影響する水の影響は束縛水によるもので、自由水による影響はほとんど認められないことを意味している。

以上の結果から、天然セルロース（セルロースI）は水分の存在により、より安定な高次構造の移ることから、非晶領域のセルロース主鎖の再配列の起こり易いためミセル構造を持つと考えることにより、水分子とセルロース分子の相互作用に対し明確に説明できることがわかった。

文献

Netsu Sokutei 18(4) 1991 —245—
12. 総 括

畑山立子*
1957年 Frank と Wenは希薄溶液中のイオンの周りの水の構造について, Fig. 1 に示す様な単純なモデルを提案した。現在, 水と高分子の相互作用を研究すると言う観点から、熱分析で主な研究対象となっているのは、固体に保持された水またはゲルや、超濃厚水溶液などで、Fig. 1 の I および II の水の特性解析が中心になっている。

このワークショップで取り上げられたのは、1）分離膜等のように、細孔を持つ高分子アリサクリックスに束縛された水、2）ヒドロゲルのように、2 次元架橋高分子にとりこまれた水、3）生体物質、生体高分子中の水である。

高分子膜がフィルタ性能の化学構造をもつ時は、細孔水の融解または結晶化温度から孔径を、曲線から孔径分布を測定できることを石切山らが示し、多くの応用分野への可能性を示唆した。細孔水での結晶化については、1）核生成、2）細孔のサイズ、水分子の数、3）細孔中の水と水の界面エネルギーなど説明があつまった。近沢氏は孔中の水の密度変化と水分子数について、実験結果を示した。結晶化の解析法については新居氏が高分子結晶の理論発展させて、ゲルの水の結晶化に適用した解析例を示した。

ゲル中の水の構造については、ゲル凍結時での水の大きさと水分子の移動を規制する 3 次元網目構造という観点から、融解結晶化現象を説明する村勢氏と、

Summary of the Workshop
* 繊維高分子材料研究所〒305つくば市東 1丁目 1-4
Tatsuko Hatakeyama, Research Institute for Polymers and Textiles, Higashi 1-1-4 Tsukuba, Ibaraki 305

Fig. 1 Structure of water molecules surrounding ions.
I: region of immobilization of water
II: region of structure breaking
III: structurally normal water

ゲル中に生成する多量の amorphous ice、準安定状態の水で説明しようとする吉田氏、さらにゲルの不安定な水が発熱を経て融解にいたる過程をゲルにポリオール等を加えて詳細に検討した西成氏と、それぞれに論説は異なることがあきらかとなり、今後の展開が楽しみとなった。

生体物質と水、さらに、これらの水の研究に果たす熱分析の役割について討議の予定であったが、司会者の不即座により問題 1 および 2）に熱中しすぎて時間切れとなってしまい、残りの議論は懸案会にもちこされてしまった。

文 献