
Katsutada Takahashi

It has been long my view that the biocalorimetry is perhaps most effectively used for the kinetic analysis of microbial cultures. This paper is a review article of the research works conducted mainly in the author's group and deals with our method for the calorimetric characterization of the biological effects of drugs and other chemicals on metabolic activities of living cells. The same principle was also adapted to a quantitative estimation of food putrefaction and of environmental pollution studies. The article also includes a proposal to determine calorimetrically the germination activity of plants seeds with the conclusion that our calorimetric method can be used for the quantitative investigation of the viable activity of various cellular processes.

1. はじめに

細胞の生成を熱化学的な立場で解釈しようという試みは1930年代にわが国の田宮ら1より世界に先がけて行われた有名な実験がある。しかし、今日においてもこの分野の研究は当時と比べて明らかに進歩していないに等しい。生体系をどうした解析の対象とするに当たり、このことがその大きな理由である。熱化学的立場の判定は論争現象も一つの流れとして多くの研究者により取り上げられているが2-4。筆者によって得られた情報の定量性についての検討を抱えており、殆どの場合生化学的意義を持たせていないと観ている。一方、細胞が放出する熱はその生理状態をきわめて忠実に反映しているため、それを指標として種々の解析を行なうことが可能である。微生物体を取り上げて細胞レベルで熱測定がその有効性を発揮できるので、熱化学的立場の情報の得るための手段としては、あくまで分析手法としての解析にしか求めるべきでなく、共に信頼している。この小稿は筆者の研究グループで行なっている研究を中心にして、最近のこの分野における方法論の展開を概観したものである。

微生物細胞や生体組織の生物的活性を代謝熱を観測することによって定量的にみようとする方法は多くの研究者によって行われている5-7。その場合、基礎となるのは細胞や組織の示す熱生成が代謝活性に厳密に対応するという点であり、熱量計の出力がそのまま生物活性を反映するとみなされていることが多い。しかしながら、熱量計の経時変化については、それが熱量計の中におかれた細胞の増殖過程を直接表わしているにもかかわらず、それを動力学的立場で取り上げようとしている研究者は少ない。

*大阪府立大学 農学部 生物物理化学研究室：堺市 百舌鳥梅町
Laboratory of Biophysical Chemistry, College of Agriculture, University of Osaka Prefecture, Mozu-ume-machi, Sakai, Osaka 591, Japan
緒言

筆者はその一人であるが、熱量計を増殖過程の解析、とりわけ増殖速度論的な立場で応用することがもっとも有用であると主張してきた34）。最近、こうした系への適用を目的とした多試料同時測定が可能なバッチ型熱量計（multiplex calorimeter）を製作し、これを効果的に使って種々の細胞増殖系での解析をおこなっている。微生物に対する薬剤作用の解析がその例であり、熱量計の出力から適切な数値モデルにもとづいて薬剤作用曲線（drug potency curve）を描く方法を提案している。また、同原理の方法論を食品の腐敗や環境汚染にも適用しており、これらの系での定量的な研究例も併せて紹介したい。

2. 測定の背景

熱量計を用いて微生物の増殖を観る場合、装置の選択がまた第一の課題である。方式からみると、（ⅰ）微生物の培養装置を外に置き、ポンプで熱量計に培養液を供給しながら熱量計セル（ⅱ）熱量計セルを培養容器そのものとして用いるバッチ法にわけられる（Fig.1）。このうち、熱量計法で用いる装置としてはスウェーデン・ルンド大学のWadsøが開発した伝導型熱量計（後にLKB社よりLKB-10700として販売）のが著名であり、一方、バッチ式のものとしてはカルヴェンの装置（Setaram社の使用が主流である。最近ではLKB社から分かれてできたThermometric社が高感度低量熱計（商品名Thermal Activity Monitor）をフローおよびバッチの両方式で使用可能なものとして販売している。日本では電子科学㈱がフロー方式のものを製作しているが、ヒトおよび哺乳動物の培養細胞を対象としており、微生物細胞に対する応用例は報告されていない。筆者のところへ寄せられた使用例等から判断してこうした分野に関心を持つ研究者の数は結構いるとみられるが、系統的に実験に取り組んでいるのはWadsøのグループならびに英国ロンドン大学のBeezerのグループあるいは西ドイツのLamprechtのグループ等に限られている。しかし、1991年にカリフォルニアで開かれる熱測定会議では、細胞レベルのセッションが組まれており、この分野の一層の展開が期待される。

さてフローであるかバッチであるか、これはどちらにその利点があり、一概にどちらが良いとは言えない。さらに、どのグループの結果が示したようにレベルにあり、しかも1960年のそれと比べて進歩は何もない。これは言い過ぎる読み方もあるかもしれないが、少なくとも筆者にとってはこれ以上のものを見越す有益と思われる資料には遭遇していないのは事実である。

これは一つには現象として観察される熱量計シグナルの理論的背景ならびにその微生物増殖との定量的関係の把握が十分になされていないためである（筆者らのグループはこの点に着目し、実際の微生物細胞の増殖系で測定を行なう一方、熱伝導理論も含め細胞増殖に伴う熱生成の過程を理論的に整理して、増殖サーキャルムのシミュレーションと増殖速度パラメーターの数値解析による決定を行なってきた39）。これは増殖サーキャルムを定量的に解析する基盤を飛躍的に拡張するものである。またこれと関連して測定解析をシステム化するために多試料同時測定の可能な熱量計を開発した40）。

3. 装置と方法

筆者らは従来から六点式熱量計を作製し使用してい
るが40）。最近はさらに同じ伝導型原理で作動する24点
式熱量計を開発し使用している。これは基本的には先
の六点式と同じで、大きさが350×700×120mmのアル
ミニウム製のヒートシンク中に一つの比較ユニットと
24個の試料ユニットが設置された計25個の熱測定ユ
ニット（calorimetric unit）で構成されている。熱の
検出は半導体熱電対素子（サーモモジュール）によっ
ており、比較ユニットからの出力との差を示差的に取
り出して、マルチプレクサ機能を有するインタフェースを通してマイクロコンピューターでフロッ
ビデオスに貯えるようになっている。
細胞レベルの現象の熱測定

いま微生物細胞の培養中に観測される見掛けの熱量計出力を \(g(t) \) とする。この出力は実際には試料のヒートシンクに対する温度差であり、その熱伝導に関しては Newton の熱伝導則が成り立つとみなされるので、熱量計ユニットの熱伝導定数（Newton の冷却定数）を \(K \) とすると、熱伝導損失を補正した時の熱量計出力 \(f(t) \) は次のように与えられる。

\[
 f(t) = g(t) + K \int g(t) \, dt
\]

この \(f(t) \) は系を仮想的な断熱状態に置いた時に観測されるであろう試料とヒートシンクとの間の温度差でもある。したがって、試料の熱容量に大きな変化が無い限り、この \(f(t) \) は試料系が生成する熱量の時変化に対応することになる。

この二つの量、\(f(t) \) と \(g(t) \) の関係を電気的な加熱曲線について示したのが Fig. 2 である。熱量計セルに設置されたヒーターに一定電位をかける。熱量計出力 \(g(t) \) は典型的な飽和曲線を与える。すなわち、初めは直線的に上昇するが、やがて熱伝導による効果のためその傾斜は緩やかになり、ついに飽和値に達する。この飽和値はヒーター出力と伝導による熱の逃げ速度が釣り合ったところであり、その値は測定が理想的な伝導型態で行われている時の熱分極値を与える。一方、この \(g(t) \) をもとに (1) 式を用いてもとめた \(f(t) \) 曲線はヒーター定電位を on にすると一定の勾配で上昇し、ついて off すると一定値にとどまる。厳密に言えば、

\[
 f(t) / \mu V = \begin{cases}
 g(t) & \text{on} \\
 K \int g(t) \, dt & \text{off}
\end{cases}
\]

Fig. 2 Electrical calibration mark \(g(t) \) and its conversion to \(f(t) \) curve.

ヒーターを on あるいは off した直後は熱量計の中心の温度分布が一時的に非定常な状態になるため、\(f(t) \) のトレースは on および off のところで緩やかな曲線になるが、細胞増殖の時定数（通常0.5〜5 h）が装置の時定数（通常5〜10min）に比べて十分に長く、電気的な値も定常状態にある期間を十分長くとって行なうため、このことは問題にならない。勿論、装置定数である \(K \) の値は正確に求めなければならないが、その方法については既報を参照されたい。

\(f(t) \) の勾配は言うまでもなく熱量計ユニットの割合値であり、ユニットが仮想的な断熱状態に置かれたとき、一定の熱生成がどれだけの熱量計出力に対応するかを与える。なお、装置の時定数に関して Table 1 の関係を理解しておくことはこの方法をいろいろな系に応用する場合に重要である。Fig. 2 においてヒーター

<table>
<thead>
<tr>
<th>装置定数 (K)</th>
<th>数 学 的 表 現</th>
<th>測定原理</th>
<th>特 徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\infty)</td>
<td>(\frac{dg(t)}{dt} = 0)</td>
<td>理想的伝導型</td>
<td>熱量計シグナルは真の熱生成速度 (thermogenesis) を与える。</td>
</tr>
<tr>
<td>大</td>
<td>(\frac{dg(t)}{dt} \ll Kg(t))</td>
<td>伝導型</td>
<td>伝導による熱の逃げ速度が熱量計セル中の熱生成速度に比べ十分遅い。</td>
</tr>
<tr>
<td>中</td>
<td>(\frac{dg(t)}{dt} \approx Kg(t))</td>
<td>恒温帯型</td>
<td>伝導による熱の逃げ速度が熱量計セル中的熱生成速度と同程度の速さ。Dewarびんを熱量計セルとする熱量計で数分で起こる熱変化を計測する時などがこれに当たる。</td>
</tr>
<tr>
<td>小</td>
<td>(\frac{dg(t)}{dt} \gg Kg(t) \gg 0)</td>
<td>断熱型</td>
<td>熱量計セルが断熱制御されていて、熱の逃げが無視できる。</td>
</tr>
</tbody>
</table>

但し、\(\frac{dg(t)}{dt} \) は熱量計セルの中のみかけの熱変化速度、\(Kg(t) \) は熱の逃げの速度に対応する

Table 1 Relationship between instrumental constant and its mode of operation.
の加熱曲線の変換値$f(t)$が直線を与えることは、適切な条件のもとでは熱生成の経時変化が(1)式という簡単な熱伝導の式で処理されたいことを見ている。

次に微生物の実際の培養における測定例を挙げる。
Fig. 25の$g(t)$はコウジカビ（Aspergillus oryzae）を固形培地であるフスマで培養した時に観測される熱量計出力である。微生物培養系でこのような記録を増殖サーモグラム（growth thermogram）と呼ぶ。この場合には培養セルは気密性のキャップでシールしてあるので、気相中の酸素を消費しつつ、シグナルはベースラインに戻っていく。これを(1)式により仮想的な断熱状態における熱変化曲線に変換したものがFig. 25の$f(t)$である。特に増殖の初期段階で対数増殖期にあるようすが伺える。サーモグラムがベースラインに戻った後も緩やかな熱生成がみられるのは酸素が殆ど無く条件でも代謝活動によるわずかな発熱が続いていることを示している。

*増殖サーモグラム：この用語についてはIUPAC-IUPAB-IUBの生物熱力学会議（Pure & Applied Chemistry, 54, 671-679 (1982)）に含まれるものとして、“power-time-curve”なる用語が一般に使われている。ただし時定数の非常に短い熱量計で熱生成の過程を観測した場合、熱量計の出力はpower（=watt）で表われる熱生成速度（thermogenesis）に近いものとなる。けれども、どんな熱量計であっても観測するのは試料の温度と熱量計の基準温度との間の温度差であって、決してpower dq/dtではない。熱量計シグナルがpowerと等しくなるのは熱量計の時定数が実際上0であるような特殊な場合に限られるのである。たとえば、等温変熱計(isoperibol calorimeter)や断熱型熱量計(adibatic calorimeter)を使用する場合のことを考えると明らかであろう。もう少し厳密に言うと、熱量計のシグナルは熱伝導損失を補正して後、試料系の熱容量をかけることにより初めて熱量の単位(Joule)となり、さらにそれを時間(s)に関して微分することによりpowerの単位(watt=J/s)となるのである。言い換えれば、熱量計シグナルを単純に積分しても真の熱生成の経時変化を与えない。このことから、筆者らは“power-time-curve”という用語は誤解を招きやすいとして、その使用に反対しており19。微生物増殖系で観測されるものについては増殖サーモグラムと呼ぶことにしている。

Fig. 3 Growth thermogram $g(t)$ observed for the growth of Asp. oryzae grown at 30°C on bran and its conversion to $f(t)$ curve. The dotted curve is the one fitted on eq. (2)

4. 増殖速度定数の決定

筆者らは対数増殖期にある微生物増殖の熱生成は次のような簡単な指数関数で表わされることを示した19。

$$f(t) = AN_t \exp(\mu t) + BN_t$$ (2)

ここで、N_tは培養時間tにおける微生物数Nから培養の初期数であり、A, Bは定数である。またμは

$$\mu = \frac{1}{N} \frac{dN}{dt}$$ (3)

で定義される増殖速度定数すなわち単位細胞当たりの平均増殖速度である。この場合、Nというのは概念的には細胞の数であるが、より一般化するためにこれを増殖の単位となる細胞の量と考えればよさそう。

(1)式により実験的に導かれた$f(t)$曲線に対し、(2)式を用いて、パラメータ最適化法でμを決定する。Fig. 3の点線は最適化により得られた回帰曲線であり、この場合には$\mu = 5.32 \times 10^{-2} \text{min}^{-1}$と決定された。ここで培養32時間目位から回帰曲線と$f(t)$曲線との間に背離がみられるのは(2)式の指数関数で近似できる範囲が限られていることを示している。サーモグラムがピークを迎えるまでもなく、このように理論曲線からずれが見られるのは増殖を誤認している栄養源の濃度が徐々に下がり、増殖速度が低下していることを反映しているにほかならない。

なお、このようにして微生物培養系で得られた$f(t)$曲線は一般に増殖曲線をある範囲で忠実にあらわしている。上のコウジカビの実験の例では、栄養体の伸長とサーモグラムの変化が良く対応していることが確認

—12—

Netsu Sokutei 18(1) 1991
細胞レベルの現象の熱測定

5. 薬剤作用の測定

Fig. 4 の(b) は大腸菌 (Escherichia coli) をブイヨン培地 (液体) で静置培養したときの増殖サーモグラムである。培地には薬剤ノピオシン（抗生物質の一種）が濃度を変えて添加している。薬剤の濃度が増加するに従い、増殖サーモグラムのヒークが培養の長時間側にずれ、また立ち上がりの勾配も小さくなっている様子がわかる。これは薬剤による増殖の抑制作用によることは言うまでもない。このことはFig. 4 の(b) 曲線を変換することによりより明確になる (Fig. 4 の(b))。

同様な例を薬剤 p-ヒドロキシ安息香酸存在下での クジラカビのフスマ培養において観測したのが Fig. 5 である。この場合、簡略にするため、p-ヒドロキシ安息香酸 (PHBA) の濃度が6種類（0〜0.3M）のものを抜き出して描いてある。增殖サーモグラムがFig. 5 に示すようにFig. 1 曲線と共に、薬剤の増殖抑制をよくあらわしている。なお、フスマのような不均一な固体状態の培地で微生物の増殖を連続的に測定する方法はここに述べる熱生成を指標とする方法以外にはありえない。

6. 薬剤の増殖抑制効果の解析

微生物細胞と薬剤の結合過程を含む次のような増殖スキームを想定する。

\[V + nS \rightarrow VS_n \rightarrow 2V + P \] (4)
\[V + nI \rightarrow VI_n \] (5)
\[VS_n + mI \rightarrow VS_n I_m \] (6)

ここで微生物の単位体 V（酵母のように数えることができる細胞とは限らないので、ここでは3式の N の代わりに V を用いている）が増殖を制限する栄養源（基質）S を m モル取り込んで複合体 VS_n になるとともに、新しい生体 V をある種の副生成物 P とともに生成する。さらに、生体 V もしくは VS_n は薬剤 I を m モル可逆的に取り込んで、新しい細胞を複製し得ない状態 VI_n としむりは VS_n I_m に変化するとする。この時、基質 S と生体との親和性を表す指標として次式に示す基質定数を定義する。

\[K_S = \frac{[V][S]^n}{[VS_n]} \] (7)

一方、薬剤についてもそれと生体との複合体の解離定数を次のとおり定義する。

\[K_d = \frac{[V][I]^n}{[VI_n]} \]

\[= \frac{[VS_n][I]^n}{[VS_n I_m]} \] (8)

Fig. 5(a) Growth thermograms of A. oryzae grown at 30°C on bran containing p-hydroxybenzoic acid at various concentrations and (b) the corresponding f(t) curves.
細胞の増殖速度定数は(3)式と同様、次のように細胞当たりの平均増殖速度

\[\mu = \frac{1}{V} \frac{dV}{dt} \]

(9)

として定義されるものであり、この関係ならびに(7), (8)式を用いて、薬剤濃度 \(i \) (= [I]) における増殖速度定数 \(\mu_i \) を導くと次のようになる。

\[\mu_i = \frac{\mu_m}{(1 + i^n/K_d)} \]

(10)

ここで \(\mu_m \) は胞外核を存在せず、塩基が十分過剰に存在する時の増殖速度定数すなわち “最大増殖速度定数、maximum growth rate constant” である。(\(S = [S] \))

実際の測定では塩基濃度が基質定数に比べ十分に高い条件で起こることになるので、次近似が成り立つ。

\[K_S \ll S^n \]

(11)

したがって、(10)式は次式のようになる。

\[\mu_i = \frac{\mu_m}{(1 + i^n/K_d)} \]

(12)

すなわち、実測値を(12)式にあてはめる、パラメータ最適化法 (parameter fitting) または回帰分析 (regression analysis) により、\(K_d \) および \(m \) 値を決定することができる。

また、このようにして得られた \(K_d \) および \(m \) 値を用い、\(\mu_i/\mu_m \) を \(i \) に対してプロットすることにより薬剤作用曲線 (drug potency curve) を描くことができる。

Fig. 6 はこのように原理に従い、Fig. 5 に示す実験データをもとに描いた PABA の Asp. oryzae の増殖に対する薬剤作用曲線である。○印は実測値であり、実線は回帰曲線を表している。

同様な実験を種々の薬剤を用いて行なった実験結果をもとに描いた薬剤作用曲線を Fig. 7 に示してある。この場合、各薬剤の作用濃度範囲が明確な比較できるよう横軸の薬剤の濃度は対数目盛で表示してある。

(12)式から明らかのように \(K_i = n/\mu_d \) で表わされる定数 \(K_i \) は微生物細胞の増殖活性を50%に抑制するに要する薬剤濃度を表わしており、一方、\(m \) 値はその薬剤の作用の協同効果を反映している。したがって、スクリー(4)〜(6)で薬剤作用が説明できる限り、ここで定義されたパラメータ \(K_i \) および \(m \) は薬剤作用を定量的に表わす指標として用用できる。

大腸菌の増殖に対する二種の抗生物質 (a) ストルレプトマイシン、(b) テトラサイクリンおよび (c) クロロムフェニコールの作用曲線を熱測定法で描いたものをFig. 8 に示す。

さらに、これらの薬剤作用曲線を特徴付ける \(K_i \) および \(m \) の値を先のコウジカビに対する
表2 組織内抑制の熱測定

<table>
<thead>
<tr>
<th>薬剤</th>
<th>酵母種</th>
<th>m</th>
<th>K_4 (mol dm$^{-3}$)</th>
<th>K_1 (mol dm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etbyhalcohol</td>
<td>Asp. oryzae</td>
<td>3.3</td>
<td>0.815</td>
<td>0.94</td>
</tr>
<tr>
<td>p-Hydroxy benzoic acid</td>
<td>Asp. oryzae</td>
<td>1.9</td>
<td>0.102</td>
<td>0.300</td>
</tr>
<tr>
<td>sodium benzoic acid</td>
<td>Asp. oryzae</td>
<td>2.1</td>
<td>0.00278</td>
<td>0.0607</td>
</tr>
<tr>
<td>calcium pnpontiate</td>
<td>Asp. oryzae</td>
<td>1.4</td>
<td>0.0113</td>
<td>0.0408</td>
</tr>
<tr>
<td>Potassium sorbate</td>
<td>Asp. oryzae</td>
<td>1.2</td>
<td>0.00964</td>
<td>0.0209</td>
</tr>
<tr>
<td>streptomycin</td>
<td>E. cole</td>
<td>1.2</td>
<td>8.69 x 10$^{-6}$</td>
<td>0.19 x 10$^{-5}$</td>
</tr>
<tr>
<td>tetracycline</td>
<td>E. cole</td>
<td>0.7</td>
<td>3.49 x 10$^{-5}$</td>
<td>0.43 x 10$^{-6}$</td>
</tr>
<tr>
<td>chloramphenicol</td>
<td>E. cole</td>
<td>1.3</td>
<td>1.46 x 10$^{-6}$</td>
<td>0.94 x 10$^{-6}$</td>
</tr>
</tbody>
</table>

薬剤の作用のものと併せてTable2に示す。

抗生物質やその他の薬剤の微生物細胞に対する作用

は最低生達阻止濃度（MIC：minimum inhibitory concentration）のような静的な量で表わされるのが一般的である。ここに示した方法は作用濃度範囲を明確

に示すより定量的な立場の方法であり、従来の方法に比べてその有用性は高いというのが筆者らの主張である。

なお、ここに示した解析はスキューム(4)〜(6)にもとづ

くものである。実際の現象はこのような単純な様式で

表わされるものでないことは当然予想され、したがっ

て、パラメータとしてのK_4、mなどの生物的意味も

明確なものではない。しかし、これらをもとに描いた薬剤

作用曲線はモデルスキュームの当てはめもかなであると

実験値に最適に近づいてあるものであり、

その意味でこうした方法で描いたdrug potency

curveは十分な意義があることを強調しておきたい。

ところで、抗生物質のうちで、ペニシリン、アンペ

シリン、ポリミシンなどのように細胞の膜系に作用

する薬剤の場合はスキューム(4)〜(6)で示すような薬剤の

可逆的結合を特徴とするモデルでは現象を説明できな

い。その場合の解析結果については文献69を参照され

たい。

7. 食品の腐敗と微生物汚染

さて、熱測定法の大きな特徴の一つは試料の形状を

問わないことである。すなわち、液体や固体が混在す

る不均一な試料であっても区別なく測定の対象とする

ことが可能である。

Fig. 9 Putrefaction thermograms of sausage. The
each samples contain different amounts of
sorbic acid as a preservative.

次にこの方法を食品そのものを対象に応用した例を

紹介する。Fig. 9はソーセージを熱量計セルの中にお

き、その腐敗過程を観察したものである。腐敗は食

品素材中に含まれる微生物の増殖とそれに伴う品質の変

化にほかならない。図中のソーセージには防腐剤ソル

ビン酸が量を変えて添加している。ソルビン酸の濃度

が高くなるに従い、腐敗セモグラムの退化が大き

くなり、腐敗が抑制されている様子をみることができる。

こうした事例は前述と同じ立場の方法論を採用すること

により、特定の薬剤の特定の食品に対する作用を定

量的に把握する手段として熱測定を有効に利用するこ

とが可能であることを示している。

食品の腐敗は公衆衛生上もっとも身近で重要な問題

である。食品衛生の立場からすると市場にてている食

品の微生物汚染度を精度よく知る必要がある。読者は

腐敗菌が多く付着しているもの程腐敗しやすく、した

がって、腐敗セモグラムが早く現われることを直観
総 説

熱測定

Fig. 11 Growth thermograms observed for the
growth of Reishi (Ganoderma lucidum
Karst.) grown on wood powder at 30℃.

Fig. 12 Heat evolution process during germination
of radish seeds, Raphanus sativus, cultured
on agar at 30℃. The curves were obtained
from germination thermograms according
to the method described in the test on the
basis of eq. (1).

Fig. 10 Putrefaction thermograms of (a) pig meat
and (b) skim milk. The thermograms shift
toward shorter incubation periods as the
extent of microbial contamination becomes
large.

の理解されるであろう。筆者らはすでに微生物培養
系において菌類と増殖サーモグラムの関係を
定量的に示した。佐藤らはこうした関係を実際の食
品に適用して、微生物の汚染度を定量化することを試
みている。Fig. 10 は微生物汚染度の異なる市販豚肉
の腐敗サーモグラムおよびスキミルク溶液中における
乳酸菌の増殖サーモグラムを示している。食品衛生
学における一般的な方法である寒天培地平板培養法を用
い、各試料の汚染菌数を測定するとともに、各試料が
示す腐敗サーモグラムの時間的なずれを比較した結
果、それらの間に良好な相関があることを示した。こ
のことから熱測定法が食品の微生物汚染度を計測す
る手段として有効に利用できることを報告している。

8. その他の生物学的研究法

細胞レベルでの熱測定法の利用として今後の可能性
を示す他の実験例を以下に示す。Fig. 11 は担子菌レイ
シ（サルノコンカ属）の菌糸体生育の増殖サーモグラ
ムである。これは本来、種菌培養の最適条件を探索
する目的でこなかった実験であるが、周期的な振動
現象が現われていることに注目して頂きたい。生物の
ような複合反応系で、なおかつ熱力学的に非平衡な状
態にある系では周期的な振動現象が現われることがし
ばしばある。Fig. 11 はレインの菌糸体生育に伴う振動
現象が熱生成の立場で観測されたものであり、このような
方法が基礎生物学的立場の興味をもって上げられ
てもよいのではと考えている。

また、Fig. 12 は植物種子の発芽に伴う熱生成を観測
したものである。ダイコン種子（Raphanus sativus）
1 粒を熱量計セルの中の寒天に置き、発芽サーモグラ
ムを記録して、これを f(t) 変換して発芽過程の熱生
成を追っている。植物個体としての種子の活性にはか
なりの個体差があるが、発芽に伴う重量の増加や芽や
根の長さの計測値と f(t) との間には良い相関が成り
立つので、発芽活性を熱測定で観るのには今後植物生理
学の立場でも有効な手段となることが期待されるあ
らぶ。
9. 環境問題への応用

最後に環境問題と関連した応用例として土壤中における有機物の微生物による被分解活性を熱測定を通じてみる方法について紹介する。土壤は不均一系であるが、それに同時に生態系として地球上における物質循環の重要な一部を担っている。グルコースを基質源としての硫黄とともに土壤中に添加すると微生物による分解を受けてその時に熱を生成する。適切な条件のもとではグルコースの分解サーキュラグラムが土壤中の微生物活性の変化とよく対応するがすでに明らかである193、このことを利用して汚染物質として6個クロムを種々の濃度で含むモデル汚染土壌を調製し、その中にグルコースを添加したときにみられる分解サーキュラグラムを示したのがFig. 13である。6個クロムは3個クロムに比べて生体に対する毒性が高いことが知られているが、その濃度によっても著しく分解サーキュラグラムの形状に変化がみられることが明らかである。この結果を先の方法と同様の取り扱いをして、6個クロム濃度とグルコースの微生物分解活性の関係をプロットしたものがFig. 14である。比較のため生体に対する毒性がより低い3個クロムについての結果も併せて示してある。実線は02式にもとづいて描いた基準曲線である。分析化学的な立場の定量法は最近非常に進歩しており、たとえばピーコン、フェラントールのような微量まで精度良く検出することが可能になっている。しかし、汚染物質の濃度がいくらか高濃度検出できたとしても、その生態系への影響の定量的評価が欠けていても、したがってその影響は現象である。生態系への影響を評価するためには、その生態系の生態系評価に欠けているので、精密な計測を必要とする。実際、適切な評価方法が今後必要であると考えられる。そのための立場から筆者らはこの熱測定法が環境汚染の生態学的評価の一手段として位置付けられることを期待している。

10. おわりに

細胞レベルでの現象で熱測定を行なう場合、いろいろな応用の可能性があることを述べてきた。熱測定が精密な物性値としての熱力学的測定手段であることを考えると、このような応用ばかりを採り上げることは、科学的役割だけを無視しているようにみられるかもしれない。しかし、実際に述べたように細胞や生物個体に含まれる現象は未だにも複雑過ぎて熱化学的立場、熱力学的立場で熱測定を行なうとすると、じっと反応してしまう場合もある。むしろ、現在の応用

Fig. 13 Microbial degradation thermograms of glucose in soil containing various amounts of chromium at 30°C. Chromium concentrations/ppm are; (a) 0, (b) 25, (c) 50, (d) 75, (e) 100, (f) 125, (g) 150 and (h) 200.

Fig. 14 The effect of chromium concentration on microbial degradation of glucose in soil at 30°C.

3）J. P. Belaich, Growth, metabolism in bacteria,
5) K. Takahashi, Abstracts of Papers, International Meeting of Microcalorimetry in Biology and Clinical Medicine, Tokai Conference, Tokyo, Japan, p. 6 (1989).